Vicente Mut
National University of San Juan
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Vicente Mut.
Journal of Neuroengineering and Rehabilitation | 2011
Pablo F. Diez; Vicente Mut; Enrique M. Avila Perona; Eric Laciar Leber
BackgroundSteady-State Visual Evoked Potential (SSVEP) is a visual cortical response evoked by repetitive stimuli with a light source flickering at frequencies above 4 Hz and could be classified into three ranges: low (up to 12 Hz), medium (12-30) and high frequency (> 30 Hz). SSVEP-based Brain-Computer Interfaces (BCI) are principally focused on the low and medium range of frequencies whereas there are only a few projects in the high-frequency range. However, they only evaluate the performance of different methods to extract SSVEP.MethodsThis research proposed a high-frequency SSVEP-based asynchronous BCI in order to control the navigation of a mobile object on the screen through a scenario and to reach its final destination. This could help impaired people to navigate a robotic wheelchair. There were three different scenarios with different difficulty levels (easy, medium and difficult). The signal processing method is based on Fourier transform and three EEG measurement channels.ResultsThe research obtained accuracies ranging in classification from 65% to 100% with Information Transfer Rate varying from 9.4 to 45 bits/min.ConclusionsOur proposed method allows all subjects participating in the study to control the mobile object and to reach a final target without prior training.
Medical Engineering & Physics | 2013
Pablo F. Diez; Sandra Mara Torres Müller; Vicente Mut; Eric Laciar; Enrique Avila; Teodiano Bastos-Filho; Mario Sarcinelli-Filho
This work presents a brain-computer interface (BCI) used to operate a robotic wheelchair. The experiments were performed on 15 subjects (13 of them healthy). The BCI is based on steady-state visual-evoked potentials (SSVEP) and the stimuli flickering are performed at high frequency (37, 38, 39 and 40 Hz). This high frequency stimulation scheme can reduce or even eliminate visual fatigue, allowing the user to achieve a stable performance for long term BCI operation. The BCI system uses power-spectral density analysis associated to three bipolar electroencephalographic channels. As the results show, 2 subjects were reported as SSVEP-BCI illiterates (not able to use the BCI), and, consequently, 13 subjects (12 of them healthy) could navigate the wheelchair in a room with obstacles arranged in four distinct configurations. Volunteers expressed neither discomfort nor fatigue due to flickering stimulation. A transmission rate of up to 72.5 bits/min was obtained, with an average of 44.6 bits/min in four trials. These results show that people could effectively navigate a robotic wheelchair using a SSVEP-based BCI with high frequency flickering stimulation.
IEEE Transactions on Control Systems and Technology | 2014
Mario Emanuel Serrano; Gustavo Scaglia; Sebastian Alejandro Godoy; Vicente Mut; Oscar A. Ortiz
This brief presents the design of a controller that allows an underactuated vessel to track a reference trajectory in the x-y plane. A trajectory tracking controller designed originally for robotic systems is applied for underactuated surface ships. Such a model is represented by numerical methods and, from this approach, the control actions for an optimal operation of the system are obtained. Its main advantage is that the condition for the tracking error tends to zero, and the calculation of control actions are obtained solving a system of linear equations. The proofs of convergence to zero of the tracking error are presented here and complete the previous work of the authors. Simulation results show the good performance of the proposed control system.
Robotica | 2009
Gustavo Scaglia; Lucía Quintero Montoya; Vicente Mut; Fernando di Sciascio
This paper presents the design of four controllers for a mobile robot such that the system may follow a preestablished trajectory. To reach this aim, the kinematic model of a mobile robot is approximated using numerical methods. Then, from such approximation, the control actions to get a minimal tracking error are calculated. Both simulation and experimental results on a PIONEER 2DX mobile robot are presented, showing a good performance of the four proposed mobile robot controllers. Also, an application of the proposed controllers to a leader robot following problem is shown; in it, the relative position between robots is obtained through a laser.
Robotics and Autonomous Systems | 2007
Emanuel Slawiñski; José F. Postigo; Vicente Mut
This paper proposes a stable control structure for the bilateral teleoperation of robots through Internet. The problem is motivated by the increasing use of the Internet as a communication channel. Internet has a time-varying delay which depends on factors such as congestion, bandwidth and distance. In this work, we propose a control structure for the teleoperation of a manipulator robot with force feedback. Such a control structure includes state controllers (placed on the local and remote sites) and a time-delay compensation, which modifies the delayed position command generated by the human operator using the force that he feels in such a delayed moment and the current force between the slave and the remote environment. In addition, the proposed control scheme is designed considering a model of the communication channel. Finally, experiments of bilateral teleoperation of robots through Intranet and Internet are shown to test the performance and stability of the designed teleoperation system.
systems man and cybernetics | 2012
Emanuel Slawiñski; Vicente Mut; Paolo Fiorini; Lucio Rafael Salinas
This paper proposes a new criterion, called absolute transparency, to design control schemes applied to bilateral teleoperation of mobile robots with time-varying delay. The absolute transparency measures how and how fast the human operator and the remote system interact with each other through a teleoperation system. The absolute transparency of different control schemes is analyzed and tested through teleoperation experiments where a human operator drives a mobile robot and receives both visual and force feedback.
Robotica | 2009
Andrés Rosales; Gustavo Scaglia; Vicente Mut; Fernando di Sciascio
A new approach for navigation of mobile robots in dynamic environments by using Linear Algebra Theory, Numerical Methods, and a modification of the Force Field Method is presented in this paper. The controller design is based on the dynamic model of a unicycle-like nonholonomic mobile robot. Previous studies very often ignore the dynamics of mobile robots and suffer from algorithmic singularities. Simulation and experimentation results confirm the feasibility and the effectiveness of the proposed controller and the advantages of the dynamic model use. By using this new strategy, the robot is able to adapt its behavior at the available knowing level and it can navigate in a safe way, minimizing the tracking error.
Robotica | 2011
Andrés Rosales; Gustavo Scaglia; Vicente Mut; Fernando di Sciascio
A novel approach for trajectory tracking of a mobile-robots formation by using linear algebra theory and numerical methods is presented in this paper. The formation controller design is based on the formation states concept and the dynamic model of a unicycle-like nonholonomic mobile robot. The proposed control law designed is decentralized and scalable. Simulations and experimental results confirm the feasibility and the effectiveness of the proposed controller and the advantages of using the dynamic model of the mobile robot. By using this new strategy, the formation of mobile robots is able to change its configuration (shape and size) and follow different trajectories in a precise way, minimizing the tracking and formation errors.
Robotica | 2012
Emanuel Slawiñski; Vicente Mut; Lucio Rafael Salinas; Sebastian García
This paper proposes a prediction system and a command fusion to help the human operator in a teleoperation system of a mobile robot with time-varying delay and force feedback. The command fusion is used to join a remote controller and the delayed users commands. Besides, a predictor is proposed since the future trajectory of the mobile robot is not known a priori being it decided online by the user. The command fusion and predictor are designed based on the time delay and the current context measured through the crash probability. Finally, the proposed scheme is tested from teleoperation experiments considering time-varying delay as well as force feedback.
international conference on indoor positioning and indoor navigation | 2010
Marcelo Segura; Hossein Hashemi; Cristian Sisterna; Vicente Mut
A self-localized Ultra-Wide-Band (UWB) system that is suitable to navigate mobile robots in indoor environments is introduced. In impulse-based UWB systems, positional accuracy is inversely proportional to the signal bandwidth. In the work, a number of anchor nodes are located at fixed positions in an indoor environment transmitting synchronized 2ns pulses with Differential Binary Phase Shift Keying (DBPSK) modulation. An UWB receiver mounted on a mobile robot utilizes Time Difference of Arrival (TDOA) between pairs of synchronized transmitting anchor nodes for localization. Self-localization implies that position estimation algorithms run locally on the mobile robot. A prototype non-coherent UWB system using off-the-shelf components is implemented where signal acquisition runs on a Field Programmable Gate Array (FPGA). Measurement results indicate sub-20cm positional accuracy with Line Of Sight (LOS) and Non-Line of Sight (NLOS) conditions relative to fixed anchor nodes in a typical indoor environment.