Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vicente Pallás is active.

Publication


Featured researches published by Vicente Pallás.


European Journal of Plant Pathology | 1996

Studies on the diagnosis of hop stunt viroid in fruit trees: Identification of new hosts and application of a nucleic acid extraction procedure based on non-organic solvents

Nathalie Astruc; Jose F. Marcos; Guy Macquaire; Thierry Candresse; Vicente Pallás

A non-radioactive digoxigenin-labelled RNA probe specific for hop stunt viroid (HSVd) diagnosis has been developed. The high sensitivity and specificity of this RNA probe in dot blot hybridizations to nucleic acids from field samples, allowed the confirmation of the presence of HSVd in apricot (Prunus armeniaca L.) and its detection in two fruit tree species not previously described as hosts of this pathogen, almond (Prunus dulcis Miller) and pomegranate (Punica granatum L.). This result supports and extends the notion of the world wide distribution of HSVd, infecting cultivated fruit trees. HSVd was also found to accumulate to much higher levels in mature apricot fruits than in leaves. Additionally, a sample processing procedure which does not involve the use of organic solvents was demonstrated to render faithful results when used for viroid detection. The combined reliability and facility of use of both this extraction procedure and the non-radioactive probe will benefit agronomic investigations addressing the detection and eradication of HSVd. Other applications of the work described here, as the study of possible causal relations between specific disorders and HSVd infection, are also discussed.


Journal of General Virology | 2011

How do plant viruses induce disease? Interactions and interference with host components.

Vicente Pallás; Juan Antonio García

Plant viruses are biotrophic pathogens that need living tissue for their multiplication and thus, in the infection-defence equilibrium, they do not normally cause plant death. In some instances virus infection may have no apparent pathological effect or may even provide a selective advantage to the host, but in many cases it causes the symptomatic phenotypes of disease. These pathological phenotypes are the result of interference and/or competition for a substantial amount of host resources, which can disrupt host physiology to cause disease. This interference/competition affects a number of genes, which seems to be greater the more severe the symptoms that they cause. Induced or repressed genes belong to a broad range of cellular processes, such as hormonal regulation, cell cycle control and endogenous transport of macromolecules, among others. In addition, recent evidence indicates the existence of interplay between plant development and antiviral defence processes, and that interference among the common points of their signalling pathways can trigger pathological manifestations. This review provides an update on the latest advances in understanding how viruses affect substantial cellular processes, and how plant antiviral defences contribute to pathological phenotypes.


Plant Molecular Biology | 2005

Development of a citrus genome-wide EST collection and cDNA microarray as resources for genomic studies

Javier Forment; José Gadea; L. Huerta; L. Abizanda; J. Agusti; S. Alamar; E. Alos; F. Andres; R. Arribas; José Pío Beltrán; A. Berbel; Miguel A. Blázquez; J. Brumos; L. A. Canas; M. Cercos; J. M. Colmenero-Flores; A. Conesa; B. Estables; Mónica Gandía; José L. García-Martínez; Jacinta Gimeno; A. Gisbert; G. Gomez; Luis González-Candelas; Antonio Granell; J. Guerri; María T. Lafuente; Francisco Madueño; Jose F. Marcos; M. C. Marques

A functional genomics project has been initiated to approach the molecular characterization of the main biological and agronomical traits of citrus. As a key part of this project, a citrus EST collection has been generated from 25 cDNA libraries covering different tissues, developmental stages and stress conditions. The collection includes a total of 22,635 high-quality ESTs, grouped in 11,836 putative unigenes, which represent at least one third of the estimated number of genes in the citrus genome. Functional annotation of unigenes which have Arabidopsis orthologues (68% of all unigenes) revealed gene representation in every major functional category, suggesting that a genome-wide EST collection was obtained. A Citrus clementina Hort. ex Tan. cv. Clemenules genomic library, that will contribute to further characterization of relevant genes, has also been constructed. To initiate the analysis of citrus transcriptome, we have developed a cDNA microarray containing 12,672 probes corresponding to 6875 putative unigenes of the collection. Technical characterization of the microarray showed high intra- and inter-array reproducibility, as well as a good range of sensitivity. We have also validated gene expression data achieved with this microarray through an independent technique such as RNA gel blot analysis.


Journal of Virology | 2004

A Long-Distance Translocatable Phloem Protein from Cucumber Forms a Ribonucleoprotein Complex In Vivo with Hop Stunt Viroid RNA

Gustavo Gómez; Vicente Pallás

ABSTRACT Viroids are highly structured plant pathogenic RNAs that do not code for any protein, and thus, their long-distance movement within the plant must be mediated by direct interaction with cellular factors, the nature of which is presently unknown. In addition to this type of RNAs, recent evidence indicates that endogenous RNAs move through the phloem acting as macromolecular signals involved in plant defense and development. The form in which these RNA molecules are transported to distal parts of the plant is unclear. Viroids can be a good model system to try to identify translocatable proteins that could assist the vascular movement of RNA molecules. Here, we demonstrate by use of immunoprecipitation experiments, that the phloem protein 2 from cucumber (CsPP2) is able to interact in vivo with a viroid RNA. Intergeneric graft assays revealed that both the CsPP2 and the Hop stunt viroid RNA were translocated to the scion. The translocated viroid is symptomatic in the nonhost scion, indicating that the translocated RNA is functional. The CsPP2 gene was cloned and sequenced. The analysis of its primary structure revealed the existence of a potential double-spaced-RNA-binding motif, previously identified in a set of proteins that bind to highly structured RNAs, which could explain its RNA-binding properties. The possible involvement of this phloem protein in assisting the long-distance movement of the viroid RNA within the plant is discussed.


European Journal of Plant Pathology | 2005

Simultaneous detection and identification of eight stone fruit viruses by one-step RT-PCR.

J. A. Sánchez-Navarro; Frederic Aparicio; M. C. Herranz; Angelantonio Minafra; A. Myrta; Vicente Pallás

A sensitive and reliable one step RT-PCR reaction with an internal control has been developed to detect and differentiate eight important viruses that affect stone fruit tress: Apple mosaic virus (ApMV), Prunus necrotic ringspot virus (PNRSV), Prune dwarf virus (PDV), American plum line pattern virus (APLPV), Plum pox virus (PPV), Apple chlorotic leaf spot virus (ACLSV), Apricot latent virus (ApLV) and Plum bark necrosis stem pitting associated virus (PBNSPaV). In addition, we investigated the detection limit and the efficiency of three different nucleic acid extraction methods that avoid the use of organic solvents, for both multiplex RT-PCR and dot-blot hybridisation assays. The primer cocktail was used to analyse 38 stone fruits originating from nine different countries and six species. A large number of virus combinations was detected and up to three different viruses were observed in five samples. A decrease in sensitivity was observed when the primer cocktail contained more than five different pair primers. However, comparative analyses showed that the multiplex RT-PCR containing the eight virus pair primers was even more sensitive than the ELISA or molecular hybridisation assays. The use of the multiplex RT-PCR technology in routine diagnosis of stone fruit tree viruses is discussed.


Journal of Plant Physiology | 2003

Influence of saline stress on root hydraulic conductance and PIP expression inArabidopsis

M. Carmen Martínez-Ballesta; Federico Aparicio; Vicente Pallás; Vicente Martínez; Micaela Carvajal

Measurements of the root hydraulic conductance (L0) of roots of Arabidopsis thaliana were carried out and the results were compared with the expression of aquaporins present in the plasma membrane of A. thaliana. L0 of plants treated with different NaCl concentrations was progressively reduced as NaCl concentration was increased compared to control plants. Also, L0 of plants treated with 60 mmol/L NaCl for different lengths of time was measured. Variations during the light period were seen, but only for the controls. A good correlation between mRNA expression and L0 was observed in both experiments. Control plants and plants treated with 60 mmol/L NaCl were incubated with Hg and then with DTT. For these plants, L0 and cell-to-cell pathway contributions to root water transport were determined. These results revealed that in control plants most water movement occurs via the cell-to-cell pathway, thus implying aquaporin involvement. But, in NaCl-stressed plants, the Hg-sensitive cell-to-cell pathway could be inhibited already by the effect of NaCl on water channels. Therefore, short periods of NaCl application to Arabidopsis plants are characterised by decreases in the L0 of roots, and are related to down-regulation of the expression of the PIP aquaporins. This finding indicates that the well known effect of salinity on L0 could involve regulation of aquaporin expression.


Molecular Plant-microbe Interactions | 2001

Identification of an In Vitro Ribonucleoprotein Complex Between a Viroid RNA and a Phloem Protein from Cucumber Plants

Gustavo Gómez; Vicente Pallás

We used the interaction of Hop stunt viroid (HSVd) and cucumber plants to investigate the involvement of phloem proteins in the systemic transport of RNA molecules. A ribonucleoprotein complex, stable even at high salt and temperature conditions, was detected in vitro between HSVd-RNA and the phloem exudate obtained from sectioned internodes from cucumber plants. The phloem protein 2 was recovered from this ribonucleoprotein complex and its RNA-binding properties as demonstrated by gel retardation analysis. The involvement of this protein in the movement of RNAs in cucumber is discussed.


Journal of General Virology | 1985

Detection of Viroid and Viroid-like RNAs from Grapevine

Ricardo Flores; N. Duran-Vila; Vicente Pallás; J. S. Semancik

SUMMARY Analysis by polyacrylamide gel electrophoresis of nucleic acid preparations, obtained from several varieties of grapevine by a procedure designed to isolate and purify viroids, revealed the presence of RNA species with some of the characteristic physical properties of viroids. Under non-denaturing conditions, a band with a mobility faster than that of citrus exocortis viroid (CEV) was detected, and under fully denaturing conditions two bands were observed, one co-migrating with the circular forms of CEV and a second migrating faster than the linear forms of this viroid. This RNA species did not hybridize with a cDNA probe to CEV. Some of the grapevine preparations were infective for Gynura aurantiaca, inducing symptoms similar to those caused by CEV, and the appearance of an RNA which had the same mobility as CEV in denaturing and non-denaturing electrophoretic systems and hybridized with cDNA to CEV. These results suggest that viroid-like and viroid RNAs can be recovered from grapevine, the former (with no detectable sequence homology to CEV) at a concentration sufficient to be observed as a physical entity in gels, and the latter (with close sequence homology to CEV) whose presence could only be revealed by bioassay. The possible involvement of these RNAs in some grapevine diseases of unknown aetiology is discussed.


Journal of General Virology | 1997

Hop stunt viroid (HSVd) sequence variants from Prunus species: evidence for recombination between HSVd isolates.

S. A. Kofalvi; Jose F. Marcos; M. C. Cañizares; Vicente Pallás; Thierry Candresse

Hop stunt viroid (HSVd) is able to infect a number of herbaceous and woody hosts, such as grapevine, Citrus or Prunus plants. Previous phylogenetic analyses have suggested the existence of three major groups of HSVd isolates (plum-type, hop-type and citrus-type). The fact that these groups often contain isolates from only a limited number of isolation hosts prompted the suggestion that group-discriminating sequence variations could, in fact, represent host-specific sequence determinants which may facilitate or be required for replication in a given host. In an effort to further understand the relationships between HSVd and its different hosts, HSVd variants from eight naturally infected Prunus sources, including apricot, peach and Japanese plum have been cloned and sequenced. In total, ten molecular variants of HSVd have been identified, nine of which have not been described before. A detailed phylogenetic analysis of the existing HSVd sequences, including the new ones from Prunus determined in this work, points towards a redefinition of the grouping of variants of this viroid, since two new groups were identified, one of them composed of sequences described here. A bias for the presence of certain sequences and/or structures in certain hosts was observed, although no conclusive host-determinants were found. Surprisingly, our analysis revealed that a number of HSVd isolates probably derived from recombination events and that the previous hop-type group itself is likely to be the result of a recombination between members of the plum-type and citrus-type groups.


PLOS ONE | 2011

High-Throughput Sequencing, Characterization and Detection of New and Conserved Cucumber miRNAs

German Martinez; Javier Forment; César Llave; Vicente Pallás; Gustavo Gómez

Micro RNAS (miRNAs) are a class of endogenous small non coding RNAs involved in the post-transcriptional regulation of gene expression. In plants, a great number of conserved and specific miRNAs, mainly arising from model species, have been identified to date. However less is known about the diversity of these regulatory RNAs in vegetal species with agricultural and/or horticultural importance. Here we report a combined approach of bioinformatics prediction, high-throughput sequencing data and molecular methods to analyze miRNAs populations in cucumber (Cucumis sativus) plants. A set of 19 conserved and 6 known but non-conserved miRNA families were found in our cucumber small RNA dataset. We also identified 7 (3 with their miRNA* strand) not previously described miRNAs, candidates to be cucumber-specific. To validate their description these new C. sativus miRNAs were detected by northern blot hybridization. Additionally, potential targets for most conserved and new miRNAs were identified in cucumber genome. In summary, in this study we have identified, by first time, conserved, known non-conserved and new miRNAs arising from an agronomically important species such as C. sativus. The detection of this complex population of regulatory small RNAs suggests that similarly to that observe in other plant species, cucumber miRNAs may possibly play an important role in diverse biological and metabolic processes.

Collaboration


Dive into the Vicente Pallás's collaboration.

Top Co-Authors

Avatar

J. A. Sánchez-Navarro

Polytechnic University of Valencia

View shared research outputs
Top Co-Authors

Avatar

Frederic Aparicio

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Gustavo Gómez

Polytechnic University of Valencia

View shared research outputs
Top Co-Authors

Avatar

Jose F. Marcos

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

José Navarro

Polytechnic University of Valencia

View shared research outputs
Top Co-Authors

Avatar

German Martinez

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar

Ricardo Flores

Polytechnic University of Valencia

View shared research outputs
Top Co-Authors

Avatar

M. Amelia Sanchez-Pina

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

M. Al Rwahnih

University of California

View shared research outputs
Top Co-Authors

Avatar

Ainhoa Genovés

Polytechnic University of Valencia

View shared research outputs
Researchain Logo
Decentralizing Knowledge