Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vicki Chrysostomou is active.

Publication


Featured researches published by Vicki Chrysostomou.


Current Opinion in Pharmacology | 2013

Oxidative stress and mitochondrial dysfunction in glaucoma.

Vicki Chrysostomou; Fatemeh Rezania; Ian A. Trounce; Jonathan G. Crowston

Mitochondrial dysfunction increases reactive oxygen species (ROS) production and when this overwhelms the cellular antioxidant defences, oxidative stress ensues. Oxidative stress is recognized as a common pathologic pathway in many neurodegenerative diseases. Recent reports have also demonstrated oxidative stress in ocular tissues derived from experimental glaucoma models and clinical samples. There is also accumulating evidence pointing to mitochondrial dysfunction being present in some glaucoma patients. Thus oxidative stress from mitochondrial dysfunction may also play a causal role in glaucoma. The mechanisms by which oxidative stress may induce retinal ganglion cell loss in glaucoma are not fully understood but could include direct neurotoxic effects from ROS or indirect damage from oxidative stress-induced dysfunction of glial cells. This review will consider the evidence for the presence of oxidative stress in glaucoma; the mechanisms by which oxidative stress may contribute to disease pathogenesis; and also consider therapeutic approaches that target oxidative stress as a means of protecting against optic nerve degeneration.


Experimental Eye Research | 2011

Mitochondrial dysfunction in glaucoma and emerging bioenergetic therapies

Shanjean Lee; Nicole J. Van Bergen; George Kong; Vicki Chrysostomou; Hayley S. Waugh; Evelyn C. O’Neill; Jonathan G. Crowston; Ian A. Trounce

The similarities between glaucoma and mitochondrial optic neuropathies have driven a growing interest in exploring mitochondrial function in glaucoma. The specific loss of retinal ganglion cells is a common feature of mitochondrial diseases - not only the classic mitochondrial optic neuropathies of Lebers Hereditary Optic Neuropathy and Autosomal Dominant Optic Atrophy - but also occurring together with more severe central nervous system involvement in many other syndromic mitochondrial diseases. The retinal ganglion cell, due to peculiar structural and energetic constraints, appears acutely susceptible to mitochondrial dysfunction. Mitochondrial function is also well known to decline with aging in post-mitotic tissues including neurons. Because age is a risk factor for glaucoma this adds another impetus to investigating mitochondria in this common and heterogeneous neurodegenerative disease. Mitochondrial function may be impaired by either nuclear gene or mitochondrial DNA genetic risk factors, by mechanical stress or chronic hypoperfusion consequent to the commonly raised intraocular pressure in glaucomatous eyes, or by toxic xenobiotic or even light-induced oxidative stress. If primary or secondary mitochondrial dysfunction is further established as contributing to glaucoma pathogenesis, emerging therapies aimed at optimizing mitochondrial function represent potentially exciting new clinical treatments that may slow retinal ganglion cell and vision loss in glaucoma.


Investigative Ophthalmology & Visual Science | 2012

Impaired Complex-I-Linked Respiration and ATP Synthesis in Primary Open-Angle Glaucoma Patient Lymphoblasts

Shanjean Lee; Leo Sheck; Jonathan G. Crowston; Nicole J. Van Bergen; Evelyn C. O'Neill; Fleur O'Hare; Yu Xiang George Kong; Vicki Chrysostomou; Andrea L. Vincent; Ian A. Trounce

PURPOSE Following the recent demonstration of increased mitochondrial DNA mutations in lymphocytes of POAG patients, the authors sought to characterize mitochondrial function in a separate cohort of POAG. METHODS Using similar methodology to that previous applied to Lebers hereditary optic neuropathy (LHON) patients, maximal adenosine triphosphate (ATP) synthesis and cellular respiration rates, as well as cell growth rates in glucose and galactose media, were assessed in transformed lymphocytes from POAG patients (n = 15) and a group of age- and sex-matched controls (n = 15). RESULTS POAG lymphoblasts had significantly lower rates of complex-I-driven ATP synthesis, with preserved complex-II-driven ATP synthesis. Complex-I driven maximal respiration was also significantly decreased in patient cells. Growth in galactose media, where cells are forced to rely on mitochondrial ATP production, revealed no significant differences between the control and POAG cohort. CONCLUSIONS POAG lymphoblasts in the study cohort exhibited a defect in complex-I of the oxidative phosphorylation pathway, leading to decreased rates of respiration and ATP production. Studies in LHON and other diseases have established that lymphocyte oxidative phosphorylation measurement is a reliable indicator of systemic dysfunction of this pathway. While these defects did not impact lymphoblast growth when the cells were forced to rely on oxidative ATP supply, the authors suggest that in the presence of a multitude of cellular stressors as seen in the early stages of POAG, these defects may lead to a bioenergetic crisis in retinal ganglion cells and an increased susceptibility to cell death.


Investigative Ophthalmology & Visual Science | 2016

AAV-Mediated CRISPR/Cas Gene Editing of Retinal Cells In Vivo

Sandy S. C. Hung; Vicki Chrysostomou; Fan Li; Jeremiah K. H. Lim; Jiang-Hui Wang; Joseph E. Powell; Leilei Tu; Maciej Daniszewski; Camden Lo; Raymond C.B. Wong; Jonathan G. Crowston; Alice Pébay; Anna E. King; Bang V. Bui; Guei-Sheung Liu; Alex W. Hewitt

PURPOSE Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated protein (Cas) has recently been adapted to enable efficient editing of the mammalian genome, opening novel avenues for therapeutic intervention of inherited diseases. In seeking to disrupt yellow fluorescent protein (YFP) in a Thy1-YFP transgenic mouse, we assessed the feasibility of utilizing the adeno-associated virus 2 (AAV2) to deliver CRISPR/Cas for gene modification of retinal cells in vivo. METHODS Single guide RNA (sgRNA) plasmids were designed to target YFP, and after in vitro validation, selected guides were cloned into a dual AAV system. One AAV2 construct was used to deliver Streptococcus pyogenes Cas9 (SpCas9), and the other delivered sgRNA against YFP or LacZ (control) in the presence of mCherry. Five weeks after intravitreal injection, retinal function was determined using electroretinography, and CRISPR/Cas-mediated gene modifications were quantified in retinal flat mounts. RESULTS Adeno-associated virus 2-mediated in vivo delivery of SpCas9 with sgRNA targeting YFP significantly reduced the number of YFP fluorescent cells of the inner retina of our transgenic mouse model. Overall, we found an 84.0% (95% confidence interval [CI]: 81.8-86.9) reduction of YFP-positive cells in YFP-sgRNA-infected retinal cells compared to eyes treated with LacZ-sgRNA. Electroretinography profiling found no significant alteration in retinal function following AAV2-mediated delivery of CRISPR/Cas components compared to contralateral untreated eyes. CONCLUSIONS Thy1-YFP transgenic mice were used as a rapid quantifiable means to assess the efficacy of CRISPR/Cas-based retinal gene modification in vivo. We demonstrate that genomic modification of cells in the adult retina can be readily achieved by viral-mediated delivery of CRISPR/Cas.


Ophthalmic Research | 2010

Mechanisms of Retinal Ganglion Cell Injury in Aging and Glaucoma

Vicki Chrysostomou; Ian A. Trounce; Jonathan G. Crowston

Aging is the greatest risk factor for glaucoma, implying that intrinsic age-related changes to retinal ganglion cells, their supporting tissue or both make retinal ganglion cells susceptible to injury. Changes to the ocular vasculature, connective tissue of the optic nerve head and mitochondria, which have been documented with advancing age and shown to be exacerbated in glaucoma, may predispose to glaucomatous injury. When considering such age-related changes, it is difficult to separate pathological change from physiological change, and cause from consequence. The insults that predispose aged retinal ganglion cells to injury are likely to be varied and multiple; therefore, it may be more relevant to identify and treat common mechanisms that predispose to retinal ganglion cell failure and/or death. We suggest that mitochondrial dysfunction, as either a cause or consequence of injury, renders retinal ganglion cells sensitive to degeneration. Therapeutic approaches that target mitochondria and promote energy production may provide a general means of protecting aged retinal ganglion cells from degeneration, regardless of the etiology.


Investigative Ophthalmology & Visual Science | 2013

The photopic negative response of the mouse electroretinogram: reduction by acute elevation of intraocular pressure.

Vicki Chrysostomou; Jonathan G. Crowston

PURPOSE To determine the presence and magnitude of the photopic negative response (PhNR) component of the electroretinogram (ERG) in the mouse eye and to test if it is altered by short-term elevation of intraocular pressure (IOP). METHODS Photopic and scotopic ERGs were recorded from 12-month-old C57BL/6J mice and analyzed for photoreceptoral responses (a-wave), bipolar cell responses (b-wave), scotopic threshold responses (STRs), and PhNRs. Electroretinogram signals were measured before and after short-term subischemic elevation of IOP (50 mm Hg for 30 minutes) induced by cannulation of the anterior chamber. Retinas were subsequently assessed for signs of retinal stress and cell survival using immunohistochemistry and quantitative PCR. RESULTS The corneal negative PhNR of the photopic ERG was elicited in the mouse eye, and its amplitudes correlated with amplitudes of the positive STR (pSTR). Elevation of IOP significantly reduced amplitudes of both the PhNR and pSTR, while scotopic a-waves, scotopic b-waves, and photopic b-waves were unchanged. Pressure elevation was associated with upregulation of glial fibrillary acidic protein and heme oxygenase 1 expression in retinal macroglia in the absence of retinal cell death. CONCLUSIONS The PhNR component of the full-field ERG can be recorded in mice and is sensitive to elevation of IOP. Correlation between PhNR and pSTR signals before and after IOP elevation suggests that the PhNR depends on inner retinal integrity and provides a means for evaluating inner retinal function in mouse models.


Investigative Ophthalmology & Visual Science | 2008

The status of cones in the rhodopsin mutant P23H-3 retina: Light-regulated damage and repair in parallel with rods

Vicki Chrysostomou; Jonathan Stone; Sally Stowe; Nigel L. Barnett; Krisztina Valter

PURPOSE This study tests whether cones in the rhodopsin-mutant transgenic P23H-3 retina are damaged by ambient light and whether subsequent light restriction allows repair of damaged cones. METHODS P23H-3 rats were raised in scotopic cyclic (12 hours of 5 lux, 12 hours of dark) ambient light. At postnatal day 90 to 130, some were transferred to photopic conditions (12 hours of 300 lux, 12 hours of dark) for 1 week and then returned to scotopic conditions for up to 5 weeks. Photoreceptor function was assessed by the dark-adapted flash-evoked electroretinogram, using a two-flash paradigm to isolate the cone response. Outer-segment structure was demonstrated by immunohistochemistry for cone and rod opsins and by electron microscopy. RESULTS Exposure for 1 week to photopic ambient light reduced the cone b-wave, the rod b-wave, and the rod a-wave by 40% to 60% and caused shortening and disorganization of cone and rod outer segments. Restoration of scotopic conditions for 2 to 5 weeks allowed partial recovery of the cone b-wave and the rod a- and b-waves, and regrowth of outer segments. CONCLUSIONS Modest increases in ambient light cause rapid and significantly reversible loss of cone and rod function in the P23H-3 retina. The reduction and recovery of cone function are associated with shortening and regrowth of outer segments. Because the P23H mutation affects a protein expressed specifically in rods, this study emphasizes the close dependence of cones on rod function. It also demonstrates the capacity of cones and rods to repair their structure and regain function.


Investigative Ophthalmology & Visual Science | 2009

Life History of Cones in the Rhodopsin-Mutant P23H-3 Rat: Evidence of Long-term Survival

Vicki Chrysostomou; Jonathan Stone; Krisztina Valter

PURPOSE To follow the status of cones over the life of the P23H-3 transgenic rat, while the rod population is depleted. METHODS P23H-3 heterozygous and Sprague-Dawley (SD) control rats were raised in dim, cyclic light from postnatal day (P)10 to P540. Retinas were examined for cone density, cone outer segment (OS) length, cone axon and soma morphology, and the amplitude of rod and cone components of the electroretinogram (ERG) were determined. RESULTS In the P23H-3 retina, cone density followed a developmental pattern, increasing from P10 until P20, declining during early adult life (to P150), then steadying at levels found in the SD retina until P540. Cone OSs elongated to P30 and then slowly shortened during late adulthood; at P350 and P540, cone OSs were significantly shorter than in the background SD strain. Cone axons shortened slowly throughout adult life as the outer nuclear layer thinned. The rod a-wave declined steadily in the P23H-3 retina from P10, falling below amplitudes seen in the SD strain from early life. By contrast, the cone b-wave maintained amplitude at SD levels, until P380. CONCLUSIONS Despite the ongoing loss of rod function and numbers, cone numbers in the P23H-3 retina were maintained at levels found in the SD rat to the oldest age examined, and cone function and OS morphology were maintained for approximately 1 year, indicating a long period of cone independence. The long period of cone survival creates an opportunity to induce self-repair, if the stress causing their dysfunction can be reduced.


Aging Cell | 2011

Increase in mitochondrial DNA mutations impairs retinal function and renders the retina vulnerable to injury

Yu X. G. Kong; Nicole J. Van Bergen; Ian A. Trounce; Bang V. Bui; Vicki Chrysostomou; Hayley S. Waugh; Algis J. Vingrys; Jonathan G. Crowston

Mouse models that accumulate high levels of mitochondrial DNA (mtDNA) mutations owing to impairments in mitochondrial polymerase γ (PolG) proofreading function have been shown to develop phenotypes consistent with accelerated aging. As increase in mtDNA mutations and aging are risk factors for neurodegenerative diseases, we sought to determine whether increase in mtDNA mutations renders neurons more vulnerable to injury. We therefore examined the in vivo functional activity of retinal neurons and their ability to cope with stress in transgenic mice harboring a neural‐targeted mutant PolG gene with an impaired proofreading capability (Kasahara, et al. (2006) Mol Psychiatry11(6):577–93, 523). We confirmed that the retina of these transgenic mice have increased mtDNA deletions and point mutations and decreased expression of mitochondrial oxidative phosphorylation enzymes. Associated with these changes, the PolG transgenic mice demonstrated accelerated age‐related loss in retinal function as measured by dark‐adapted electroretinogram, particularly in the inner and middle retina. Furthermore, the retinal ganglion cell–dominant inner retinal function in PolG transgenic mice showed greater vulnerability to injury induced by raised intraocular pressure, an insult known to produce mechanical, metabolic, and oxidative stress in the retina. These findings indicate that an accumulation of mtDNA mutations is associated with impairment in neural function and reduced capacity of neurons to resist external stress in vivo, suggesting a potential mechanism whereby aging central nervous system can become more vulnerable to neurodegeneration.


Experimental Eye Research | 2015

An acute intraocular pressure challenge to assess retinal ganglion cell injury and recovery in the mouse

Jonathan G. Crowston; Yu Xiang G. Kong; Ian A. Trounce; Trung M. Dang; Eamonn T. Fahy; Bang V. Bui; John C. Morrison; Vicki Chrysostomou

We describe a model of acute intraocular pressure (IOP) elevation in the mouse eye that induces reversible loss of inner retinal function associated with oxidative stress, glial cell activation and minimal loss of retinal ganglion cell (RGC) number. Young healthy mouse eyes recover inner retinal function within 7-days but more persistent functional loss is seen in older mice. Manipulation of diet and exercise further modify RGC recovery demonstrating the utility of this injury model for investigating lifestyle and therapeutic interventions. We believe that systematic investigation into the characteristics and determinants of RGC recovery following an IOP challenge will shed light on processes that govern RGC vulnerability in the early stages of glaucoma.

Collaboration


Dive into the Vicki Chrysostomou's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bang V. Bui

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Krisztina Valter

Australian National University

View shared research outputs
Top Co-Authors

Avatar

Alice Pébay

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar

George Kong

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge