Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vicki Stone is active.

Publication


Featured researches published by Vicki Stone.


Nature Nanotechnology | 2008

Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study

Craig A. Poland; Rodger Duffin; Ian A. Kinloch; Andrew D. Maynard; William Wallace; Anthony Seaton; Vicki Stone; S. A. Brown; William MacNee; Ken Donaldson

Carbon nanotubes have distinctive characteristics, but their needle-like fibre shape has been compared to asbestos, raising concerns that widespread use of carbon nanotubes may lead to mesothelioma, cancer of the lining of the lungs caused by exposure to asbestos. Here we show that exposing the mesothelial lining of the body cavity of mice, as a surrogate for the mesothelial lining of the chest cavity, to long multiwalled carbon nanotubes results in asbestos-like, length-dependent, pathogenic behaviour. This includes inflammation and the formation of lesions known as granulomas. This is of considerable importance, because research and business communities continue to invest heavily in carbon nanotubes for a wide range of products under the assumption that they are no more hazardous than graphite. Our results suggest the need for further research and great caution before introducing such products into the market if long-term harm is to be avoided.


Particle and Fibre Toxicology | 2006

The potential risks of nanomaterials: a review carried out for ECETOC

Paul J. A. Borm; David Robbins; Stephan Haubold; Thomas A. J. Kuhlbusch; H. Fissan; Ken Donaldson; Roel P. F. Schins; Vicki Stone; Wolfgang G. Kreyling; Jürgen Lademann; Jean Krutmann; David B. Warheit; Eva Oberdörster

During the last few years, research on toxicologically relevant properties of engineered nanoparticles has increased tremendously. A number of international research projects and additional activities are ongoing in the EU and the US, nourishing the expectation that more relevant technical and toxicological data will be published. Their widespread use allows for potential exposure to engineered nanoparticles during the whole lifecycle of a variety of products. When looking at possible exposure routes for manufactured Nanoparticles, inhalation, dermal and oral exposure are the most obvious, depending on the type of product in which Nanoparticles are used. This review shows that (1) Nanoparticles can deposit in the respiratory tract after inhalation. For a number of nanoparticles, oxidative stress-related inflammatory reactions have been observed. Tumour-related effects have only been observed in rats, and might be related to overload conditions. There are also a few reports that indicate uptake of nanoparticles in the brain via the olfactory epithelium. Nanoparticle translocation into the systemic circulation may occur after inhalation but conflicting evidence is present on the extent of translocation. These findings urge the need for additional studies to further elucidate these findings and to characterize the physiological impact. (2) There is currently little evidence from skin penetration studies that dermal applications of metal oxide nanoparticles used in sunscreens lead to systemic exposure. However, the question has been raised whether the usual testing with healthy, intact skin will be sufficient. (3) Uptake of nanoparticles in the gastrointestinal tract after oral uptake is a known phenomenon, of which use is intentionally made in the design of food and pharmacological components. Finally, this review indicates that only few specific nanoparticles have been investigated in a limited number of test systems and extrapolation of this data to other materials is not possible. Air pollution studies have generated indirect evidence for the role of combustion derived nanoparticles (CDNP) in driving adverse health effects in susceptible groups. Experimental studies with some bulk nanoparticles (carbon black, titanium dioxide, iron oxides) that have been used for decades suggest various adverse effects. However, engineered nanomaterials with new chemical and physical properties are being produced constantly and the toxicity of these is unknown. Therefore, despite the existing database on nanoparticles, no blanket statements about human toxicity can be given at this time. In addition, limited ecotoxicological data for nanomaterials precludes a systematic assessment of the impact of Nanoparticles on ecosystems.


Nanotoxicology | 2007

Toxicology of nanoparticles: A historical perspective

Günter Oberdörster; Vicki Stone; Ken Donaldson

The rapid expansion of nanotechnology promises to have great benefits for society, yet there is increasing concern that human and environmental exposure to engineered nanomaterials may result in significant adverse effects. That is why the field of nanotoxicology – dealing with effects and potential risks of particulate structures <100 nm in size – has emerged, growing significantly over the past decade from long-standing foundations of well established knowledge on the toxicology of fibrous and non-fibrous particles and the interactions of viruses with cells. This review places nanoparticles in the context of conventional particle toxicology and so includes references to other types of particles, such as silica and asbestos, which have been extensively studied and can provide useful lessons relevant to newly engineered nanoparticles (NP). Discoveries of nanoparticle-specific concepts of toxicology related to their small size and large specific surface area go back to the early parts of the past century, although the distinctive biological effects and kinetics of NP were not recognized until the last decade of the past century. Today, the propensity of NP to cross cell barriers, enter cells and interact with subcellular structures is well established, as is the induction of oxidative stress as a major mechanism of nanoparticle effects. In addition to the significance of small size and surface area of NP, uncovering the impact of many other physico-chemical characteristics – in particular NP surface properties – for initiating effects in the mammalian organism and the environment is now an active area of research. The article aims to cover hazards relevant to humans, provides an introduction to some of the newly emerging literature on fate and behavior of NP in the environment, as well as describing their ecotoxicology in a variety of species. Major milestones in the research leading to our present understanding of nanotoxicology and the potential risks of NP to humans and the environment are summarized. These risks are likely to be different for different nanomaterials, ranging from perceived and very low for most, to real and very high for some. There are many questions that remain to be addressed, and we foresee for the future a continuing extended research in nanotoxicology. A full understanding of the hazard of NP will make a major contribution to the risk assessment that is so urgently needed to ensure that products that utilize NP are made safely, are exploited to their full potential and then disposed of safely.


Particle and Fibre Toxicology | 2005

Combustion-derived nanoparticles: A review of their toxicology following inhalation exposure

Ken Donaldson; Lang Tran; Luis A. Jimenez; Rodger Duffin; David E. Newby; Nicholas L. Mills; William MacNee; Vicki Stone

This review considers the molecular toxicology of combustion-derived nanoparticles (CDNP) following inhalation exposure. CDNP originate from a number of sources and in this review we consider diesel soot, welding fume, carbon black and coal fly ash. A substantial literature demonstrates that these pose a hazard to the lungs through their potential to cause oxidative stress, inflammation and cancer; they also have the potential to redistribute to other organs following pulmonary deposition. These different CDNP show considerable heterogeneity in composition and solubility, meaning that oxidative stress may originate from different components depending on the particle under consideration. Key CDNP-associated properties of large surface area and the presence of metals and organics all have the potential to produce oxidative stress. CDNP may also exert genotoxic effects, depending on their composition. CDNP and their components also have the potential to translocate to the brain and also the blood, and thereby reach other targets such as the cardiovascular system, spleen and liver. CDNP therefore can be seen as a group of particulate toxins unified by a common mechanism of injury and properties of translocation which have the potential to mediate a range of adverse effects in the lungs and other organs and warrant further research.


Critical Reviews in Toxicology | 2010

A review of the in vivo and in vitro toxicity of silver and gold particulates: Particle attributes and biological mechanisms responsible for the observed toxicity

Helinor Johnston; Gary R Hutchison; Frans M. Christensen; Sheona Peters; Steve Hankin; Vicki Stone

This review is concerned with evaluating the toxicity associated with human exposure to silver and gold nanoparticles (NPs), due to the relative abundance of toxicity data available for these particles, when compared to other metal particulates. This has allowed knowledge on the current understanding of the field to be gained, and has demonstrated where gaps in knowledge are. It is anticipated that evaluating the hazards associated with silver and gold particles will ultimately enable risk assessments to be completed, by combining this information with knowledge on the level of human exposure. The quantity of available hazard information for metals is greatest for silver particulates, due to its widespread inclusion within a number of diverse products (including clothes and wound dressings), which primarily arises from its antibacterial behaviour. Gold has been used on numerous occasions to assess the biodistribution and cellular uptake of NPs following exposure. Inflammatory, oxidative, genotoxic, and cytotoxic consequences are associated with silver particulate exposure, and are inherently linked. The primary site of gold and silver particulate accumulation has been consistently demonstrated to be the liver, and it is therefore relevant that a number of in vitro investigations have focused on this potential target organ. However, in general there is a lack of in vivo and in vitro toxicity information that allows correlations between the findings to be made. Instead a focus on the tissue distribution of particles following exposure is evident within the available literature, which can be useful in directing appropriate in vitro experimentation by revealing potential target sites of toxicity. The experimental design has the potential to impact on the toxicological observations, and in particular the use of excessively high particle concentrations has been observed. As witnessed for other particle types, gold and silver particle sizes are influential in dictating the observed toxicity, with smaller particles exhibiting a greater response than their larger counterparts, and this is likely to be driven by differences in particle surface area, when administered at an equal-mass dose. A major obstacle, at present, is deciphering whether the responses related to silver nanoparticulate exposure derive from their small size, or particle dissolution contributes to the observed toxicity. Alternatively, a combination of both may be responsible, as the release of ions would be expected to be greater for smaller particles.


Inhalation Toxicology | 2007

Proinflammogenic Effects of Low-Toxicity and Metal Nanoparticles In Vivo and In Vitro: Highlighting the Role of Particle Surface Area and Surface Reactivity

Rodger Duffin; Lang Tran; David M. Brown; Vicki Stone; Ken Donaldson

Different particle types cause excessive lung inflammation that is thought to play a role in the various types of pathology they produce. Recently attention has been focused on nanoparticles due to their presence in environmental particulate air pollution, their use and exposure in occupational settings, and their potential use in nanotechnology and novel therapeutics. We have shown previously that the surface area metric drives the overload response. We have instilled a number of low-toxicity dusts of various particle sizes and assessed neutrophil influx into the lung at 18–24 h postinstillation. The extent of inflammation was demonstrated as being a function not of the mass dose instilled but interestingly of the surface area dose instilled. Since low-toxicity nanoparticles present a “special” case of high surface area, they are relatively inflammogenic. We tested whether we could use this approach to model the reactivity of highly toxic dusts. Rats were instilled with either DQ12 quartz or aluminum lactate-treated DQ12 and, as anticipated, the high specific surface toxicity of DQ12 meant that it was much more inflammogenic (63 times more) than the surface area alone would have predicted. By contrast, aluminum lactate-treated DQ12 fell into the line of “low-toxicity” dusts. In addition, as an in vitro testing alternative to that of in vivo testing, interleukin (IL)-8 production in A549 cells exposed to the panel of various particles clearly demonstrated the ability to also identify a relationship between surface area dose and reactivity. These approaches present the possibility of modelling potential toxicity of nanoparticles and nuisance dusts based on the inflammatory response of a given instilled surface area dose.


Inhalation Toxicology | 2003

The role of free radicals in the toxic and inflammatory effects of four different ultrafine particle types.

Colin A. J. Dick; David M. Brown; Ken Donaldson; Vicki Stone

PM 10 contains an ultrafine component, which is generally derived from combustion processes. This ultrafine fraction may be a factor in the increases in exacerbations of respiratory disease and deaths from cardiorespiratory causes associated with transient increases in levels of PM 10. By using four different ultrafine particles (carbon black, cobalt, nickel, and titanium dioxide), we set out to determine the attributes of the ultrafine particle (surface area, chemical composition, particle number, or surface reactivity) that contribute most to its toxicity and proinflammatory effects both in vivo and in vitro. Instillation of 125 µg ultrafine carbon black (UFCB) and ultrafine cobalt (UFCo) particles induced a significant influx of neutrophils at both 4 and 18 h postinstillation. Accompanying the influx of neutrophils was an increase in macrophage inflammatory protein-2 (MIP-2) (at 4 h) and an increase in γ-glutamyl transpeptidase (at 18 h) in bronchoalveolar lavage fluid (BAL). Ultrafine nickel (UFNi) did not induce a significant increase in neutrophil influx until 18 h postinstillation. The increase in neutrophils induced by UFNi at this timepoint was comparable to that induced by UFCo and UFCB. UFTi did not induce a significant increase in neutrophils following instillation into the rat lung. The levels of MIP-2 observed at 4 h and neutrophil influx at 18 h induced by the particle samples were consistent with the pattern of surface free radical generation (as measured by the plasmid scission assay) whereby UFCo, UFCB, and UFNi all cause significant increases in inflammatory markers, as well as inducing a significant depletion of supercoiled plasmid DNA, indicative of hydroxyl radical generation. A role for free radicals and reactive oxygen species (ROS) in mediating ultrafine inflammation is further strengthened by the ability of the antioxidants N-acetylcysteine (NAC) and glutathione monoethyl ester (GSHme) to block the particle induced release of tumour necrosis factor-α (TNF-α) from alveolar macrophages in vitro. The ultrafine particles in PM 10 may cause adverse effects via oxidative stress, and this could have implications for susceptible individuals. Susceptible individuals, such as those with COPD or asthma, already exhibit preexisting oxidative stress and hence are in a primed state for further oxidative stress induced by occupational or environmental particles.


Toxicology and Applied Pharmacology | 2008

The impact of different nanoparticle surface chemistry and size on uptake and toxicity in a murine macrophage cell line

Martin J. D. Clift; Barbara Rothen-Rutishauser; David M. Brown; Rodger Duffin; Ken Donaldson; Lorna Proudfoot; Keith Guy; Vicki Stone

This study investigated the uptake, kinetics and cellular distribution of different surface coated quantum dots (QDs) before relating this to their toxicity. J774.A1 cells were treated with organic, COOH and NH2 (PEG) surface coated QDs (40 nM). Model 20 nm and 200 nm COOH-modified coated polystyrene beads (PBs) were also examined (50 microg ml(-1)). The potential for uptake of QDs was examined by both fixed and live cell confocal microscopy as well as by flow cytometry over 2 h. Both the COOH 20 nm and 200 nm PBs were clearly and rapidly taken up by the J774.A1 cells, with uptake of 20 nm PBs being relatively quicker and more extensive. Similarly, COOH QDs were clearly taken up by the macrophages. Uptake of NH2 (PEG) QDs was not detectable by live cell imaging however, was observed following 3D reconstruction of fixed cells, as well as by flow cytometry. Cells treated with organic QDs, monitored by live cell imaging, showed only a small amount of uptake in a relatively small number of cells. This uptake was insufficient to be detected by flow cytometry. Imaging of fixed cells was not possible due to a loss in cell integrity related to cytotoxicity. A significant reduction (p<0.05) in the fluorescent intensity in a cell-free environment was found with organic QDs, NH2 (PEG) QDs, 20 nm and 200 nm PBs at pH 4.0 (indicative of an endosome) after 2 h, suggesting reduced stability. No evidence of exocytosis was found over 2 h. These findings confirm that surface coating has a significant influence on the mode of NP interaction with cells, as well as the subsequent consequences of that interaction.


The Lancet | 2009

Public health benefits of strategies to reduce greenhouse-gas emissions: health implications of short-lived greenhouse pollutants

Kirk R. Smith; Michael Jerrett; H. Ross Anderson; Richard T. Burnett; Vicki Stone; Richard G. Derwent; Richard Atkinson; Aaron Cohen; S. B. Shonkoff; Daniel Krewski; C. Arden Pope; Michael J. Thun; George D. Thurston

In this report we review the health effects of three short-lived greenhouse pollutants-black carbon, ozone, and sulphates. We undertook new meta-analyses of existing time-series studies and an analysis of a cohort of 352,000 people in 66 US cities during 18 years of follow-up. This cohort study provides estimates of mortality effects from long-term exposure to elemental carbon, an indicator of black carbon mass, and evidence that ozone exerts an independent risk of mortality. Associations among these pollutants make drawing conclusions about their individual health effects difficult at present, but sulphate seems to have the most robust effects in multiple-pollutant models. Generally, the toxicology of the pure compounds and their epidemiology diverge because atmospheric black carbon, ozone, and sulphate are associated and could interact with related toxic species. Although sulphate is a cooling agent, black carbon and ozone could together exert nearly half as much global warming as carbon dioxide. The complexity of these health and climate effects needs to be recognised in mitigation policies.


Critical Reviews in Toxicology | 2009

Development of in vitro systems for nanotoxicology: methodological considerations

Vicki Stone; Helinor Johnston; Roel P. F. Schins

Due to the rapid development of a diverse array of nanoparticles, used in a wide variety of products, there are now many international activities to assess the potential toxicity of these materials. These particles are developed due to properties such as catalytic reactivity, high surface area, light emission properties, and others. Such properties have the potential to interfere in many well-established toxicity testing protocols. This article outlines some of the most frequently used assays to assess the cytotoxity and biological reactivity of nanoparticles in vitro. The article identifies key issues that need to be addressed in relation to inclusion of relevant controls, assessing particles for their ability to interfere in the assays, and using systematic approaches to prevent misinterpretation of data. The protocols discussed range from simple cytotoxicity assays, to measurement of reactive oxygen species and oxidative stress, activation of proinflammatory signaling, and finally genotoxicity. The aim of this review is to share knowledge relating to nanoparticle toxicity testing in order to provide advice and support for guidelines, regulatory bodies, and for scientists in general.

Collaboration


Dive into the Vicki Stone's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gary R Hutchison

Edinburgh Napier University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge