Vicky Buchanan-Wollaston
University of Warwick
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Vicky Buchanan-Wollaston.
The Plant Cell | 2011
Emily Breeze; Elizabeth Harrison; Stuart McHattie; Linda Karen Hughes; Richard Hickman; Claire Hill; Steven John Kiddle; Youn-sung Kim; Christopher A. Penfold; Dafyd J. Jenkins; Cunjin Zhang; Karl Morris; Carol E. Jenner; Stephen D. Jackson; Brian Thomas; Alex Tabrett; Roxane Legaie; Jonathan D. Moore; David L. Wild; Sascha Ott; David A. Rand; Jim Beynon; Katherine J. Denby; A. Mead; Vicky Buchanan-Wollaston
This work presents a high-resolution time-course analysis of gene expression during development of a leaf from expansion through senescence. Enrichment in ontologies, sequence motifs, and transcription factor families within genes showing altered expression over time identified both metabolic pathways and potential regulators active at different stages of leaf development and senescence. Leaf senescence is an essential developmental process that impacts dramatically on crop yields and involves altered regulation of thousands of genes and many metabolic and signaling pathways, resulting in major changes in the leaf. The regulation of senescence is complex, and although senescence regulatory genes have been characterized, there is little information on how these function in the global control of the process. We used microarray analysis to obtain a high-resolution time-course profile of gene expression during development of a single leaf over a 3-week period to senescence. A complex experimental design approach and a combination of methods were used to extract high-quality replicated data and to identify differentially expressed genes. The multiple time points enable the use of highly informative clustering to reveal distinct time points at which signaling and metabolic pathways change. Analysis of motif enrichment, as well as comparison of transcription factor (TF) families showing altered expression over the time course, identify clear groups of TFs active at different stages of leaf development and senescence. These data enable connection of metabolic processes, signaling pathways, and specific TF activity, which will underpin the development of network models to elucidate the process of senescence.
The Plant Cell | 2012
Oliver P. Windram; Priyadharshini Madhou; Stuart McHattie; Claire Hill; Richard Hickman; Emma J. Cooke; Dafyd J. Jenkins; Christopher A. Penfold; Laura Baxter; Emily Breeze; Steven John Kiddle; Johanna Rhodes; Susanna Atwell; Daniel J. Kliebenstein; Youn-sung Kim; Oliver Stegle; Karsten M. Borgwardt; Cunjin Zhang; Alex Tabrett; Roxane Legaie; Jonathan D. Moore; Bärbel Finkenstädt; David L. Wild; A. Mead; David A. Rand; Jim Beynon; Sascha Ott; Vicky Buchanan-Wollaston; Katherine J. Denby
The authors generated a high-resolution time series of Arabidopsis thaliana gene expression following infection with the fungal pathogen Botrytis cinerea. Computational analysis of this large data set identified the timing of specific processes and regulatory events in the host plant and showed a role for the transcription factor TGA3 in the defense response against the fungal pathogen. Transcriptional reprogramming forms a major part of a plant’s response to pathogen infection. Many individual components and pathways operating during plant defense have been identified, but our knowledge of how these different components interact is still rudimentary. We generated a high-resolution time series of gene expression profiles from a single Arabidopsis thaliana leaf during infection by the necrotrophic fungal pathogen Botrytis cinerea. Approximately one-third of the Arabidopsis genome is differentially expressed during the first 48 h after infection, with the majority of changes in gene expression occurring before significant lesion development. We used computational tools to obtain a detailed chronology of the defense response against B. cinerea, highlighting the times at which signaling and metabolic processes change, and identify transcription factor families operating at different times after infection. Motif enrichment and network inference predicted regulatory interactions, and testing of one such prediction identified a role for TGA3 in defense against necrotrophic pathogens. These data provide an unprecedented level of detail about transcriptional changes during a defense response and are suited to systems biology analyses to generate predictive models of the gene regulatory networks mediating the Arabidopsis response to B. cinerea.
Plant Physiology | 2010
Catherine Massonnet; Denis Vile; Juliette Fabre; Matthew A. Hannah; Camila Caldana; Jan Lisec; Gerrit T.S. Beemster; Rhonda C. Meyer; Gaëlle Messerli; Jesper T. Gronlund; Josip Perkovic; Emma Wigmore; Sean T. May; Michael W. Bevan; Christian Meyer; Silvia Rubio-Díaz; Detlef Weigel; José Luis Micol; Vicky Buchanan-Wollaston; Fabio Fiorani; Sean Walsh; Bernd Rinn; Wilhelm Gruissem; Pierre Hilson; Lars Hennig; Lothar Willmitzer; Christine Granier
A major goal of the life sciences is to understand how molecular processes control phenotypes. Because understanding biological systems relies on the work of multiple laboratories, biologists implicitly assume that organisms with the same genotype will display similar phenotypes when grown in comparable conditions. We investigated to what extent this holds true for leaf growth variables and metabolite and transcriptome profiles of three Arabidopsis (Arabidopsis thaliana) genotypes grown in 10 laboratories using a standardized and detailed protocol. A core group of four laboratories generated similar leaf growth phenotypes, demonstrating that standardization is possible. But some laboratories presented significant differences in some leaf growth variables, sometimes changing the genotype ranking. Metabolite profiles derived from the same leaf displayed a strong genotype × environment (laboratory) component. Genotypes could be separated on the basis of their metabolic signature, but only when the analysis was limited to samples derived from one laboratory. Transcriptome data revealed considerable plant-to-plant variation, but the standardization ensured that interlaboratory variation was not considerably larger than intralaboratory variation. The different impacts of the standardization on phenotypes and molecular profiles could result from differences of temporal scale between processes involved at these organizational levels. Our findings underscore the challenge of describing, monitoring, and precisely controlling environmental conditions but also demonstrate that dedicated efforts can result in reproducible data across multiple laboratories. Finally, our comparative analysis revealed that small variations in growing conditions (light quality principally) and handling of plants can account for significant differences in phenotypes and molecular profiles obtained in independent laboratories.
Plant Journal | 2013
Richard Hickman; Claire Hill; Christopher A. Penfold; Emily Breeze; Laura Bowden; Jonathan D. Moore; Peijun Zhang; Alison C. Jackson; Emma J. Cooke; Findlay Bewicke-Copley; A. Mead; Jim Beynon; David L. Wild; Katherine J. Denby; Sascha Ott; Vicky Buchanan-Wollaston
Summary A model is presented describing the gene regulatory network surrounding three similar NAC transcription factors that have roles in Arabidopsis leaf senescence and stress responses. ANAC019, ANAC055 and ANAC072 belong to the same clade of NAC domain genes and have overlapping expression patterns. A combination of promoter DNA/protein interactions identified using yeast 1-hybrid analysis and modelling using gene expression time course data has been applied to predict the regulatory network upstream of these genes. Similarities and divergence in regulation during a variety of stress responses are predicted by different combinations of upstream transcription factors binding and also by the modelling. Mutant analysis with potential upstream genes was used to test and confirm some of the predicted interactions. Gene expression analysis in mutants of ANAC019 and ANAC055 at different times during leaf senescence has revealed a distinctly different role for each of these genes. Yeast 1-hybrid analysis is shown to be a valuable tool that can distinguish clades of binding proteins and be used to test and quantify protein binding to predicted promoter motifs.
Plant Journal | 2009
Carol Wagstaff; Thomas J.W. Yang; Anthony D. Stead; Vicky Buchanan-Wollaston; Jeremy A. Roberts
Senescence of plant organs is a genetically controlled process that regulates cell death to facilitate nutrient recovery and recycling, and frequently precedes, or is concomitant with, ripening of reproductive structures. In Arabidopsis thaliana, the seeds are contained within a silique, which is itself a photosynthetic organ in the early stages of development and undergoes a programme of senescence prior to dehiscence. A transcriptional analysis of the silique wall was undertaken to identify changes in gene expression during senescence and to correlate these events with ultrastructural changes. The study revealed that the most highly up-regulated genes in senescing silique wall tissues encoded seed storage proteins, and the significance of this finding is discussed. Global transcription profiles of senescing siliques were compared with those from senescing Arabidopsis leaf or petal tissues using microarray datasets and metabolic pathway analysis software (MapMan). In all three tissues, members of NAC and WRKY transcription factor families were up-regulated, but components of the shikimate and cell-wall biosynthetic pathways were down-regulated during senescence. Expression of genes encoding ethylene biosynthesis and action showed more similarity between senescing siliques and petals than between senescing siliques and leaves. Genes involved in autophagy were highly expressed in the late stages of death of all plant tissues studied, but not always during the preceding remobilization phase of senescence. Analyses showed that, during senescence, silique wall tissues exhibited more transcriptional features in common with petals than with leaves. The shared and distinct regulatory events associated with senescence in the three organs are evaluated and discussed.
Plant Physiology | 2008
Anna Marie Price; Danilo F. Aros Orellana; Farah Mohd Salleh; Ryan Stevens; Rosemary Acock; Vicky Buchanan-Wollaston; Anthony D. Stead; Hilary Joan Rogers
Petals and leaves share common evolutionary origins but perform very different functions. However, few studies have compared leaf and petal senescence within the same species. Wallflower (Erysimum linifolium), an ornamental species closely related to Arabidopsis (Arabidopsis thaliana), provide a good species in which to study these processes. Physiological parameters were used to define stages of development and senescence in leaves and petals and to align these stages in the two organs. Treatment with silver thiosulfate confirmed that petal senescence in wallflower is ethylene dependent, and treatment with exogenous cytokinin and 6-methyl purine, an inhibitor of cytokinin oxidase, suggests a role for cytokinins in this process. Subtractive libraries were created, enriched for wallflower genes whose expression is up-regulated during leaf or petal senescence, and used to create a microarray, together with 91 senescence-related Arabidopsis probes. Several microarray hybridization classes were observed demonstrating similarities and differences in gene expression profiles of these two organs. Putative functions were ascribed to 170 sequenced DNA fragments from the libraries. Notable similarities between leaf and petal senescence include a large proportion of remobilization-related genes, such as the cysteine protease gene SENESCENCE-ASSOCIATED GENE12 that was up-regulated in both tissues with age. Interesting differences included the up-regulation of chitinase and glutathione S-transferase genes in senescing petals while their expression remained constant or fell with age in leaves. Semiquantitative reverse transcription-polymerase chain reaction of selected genes from the suppression subtractive hybridization libraries revealed more complex patterns of expression compared with the array data.
Plant Cell Reports | 1988
Mireille Chabaud; Joan E. Passiatore; Frank Cannon; Vicky Buchanan-Wollaston
Kanamycin resistant plants of Medicago varia A2 were obtained by an optimized procedure for high frequency transformation using Agrobacterium tumefaciens infection of leaf and petiole tissue. Parameters which affected the frequency were explant type, the Agrobacterium strain used and the time allowed for cocultivation. Under optimum conditions, i.e., using the Agrobacterium strain A281 and a 4 day cocultivation period, the frequency of transformed leaflets obtained was greater than 70%.
Journal of Experimental Botany | 2013
Ulrike Bechtold; Waleed S. Albihlal; Tracy Lawson; Michael J. Fryer; P. A. C. Sparrow; François Richard; Ramona Persad; Laura Bowden; Richard Hickman; Cathie Martin; Jim Beynon; Vicky Buchanan-Wollaston; Neil R. Baker; James Morison; Friedrich Schöffl; Sascha Ott; Philip M. Mullineaux
Heat-stressed crops suffer dehydration, depressed growth, and a consequent decline in water productivity, which is the yield of harvestable product as a function of lifetime water consumption and is a trait associated with plant growth and development. Heat shock transcription factor (HSF) genes have been implicated not only in thermotolerance but also in plant growth and development, and therefore could influence water productivity. Here it is demonstrated that Arabidopsis thaliana plants with increased HSFA1b expression showed increased water productivity and harvest index under water-replete and water-limiting conditions. In non-stressed HSFA1b-overexpressing (HSFA1bOx) plants, 509 genes showed altered expression, and these genes were not over-represented for development-associated genes but were for response to biotic stress. This confirmed an additional role for HSFA1b in maintaining basal disease resistance, which was stress hormone independent but involved H2O2 signalling. Fifty-five of the 509 genes harbour a variant of the heat shock element (HSE) in their promoters, here named HSE1b. Chromatin immunoprecipitation-PCR confirmed binding of HSFA1b to HSE1b in vivo, including in seven transcription factor genes. One of these is MULTIPROTEIN BRIDGING FACTOR1c (MBF1c). Plants overexpressing MBF1c showed enhanced basal resistance but not water productivity, thus partially phenocopying HSFA1bOx plants. A comparison of genes responsive to HSFA1b and MBF1c overexpression revealed a common group, none of which harbours a HSE1b motif. From this example, it is suggested that HSFA1b directly regulates 55 HSE1b-containing genes, which control the remaining 454 genes, collectively accounting for the stress defence and developmental phenotypes of HSFA1bOx.
The Plant Cell | 2012
Laura Baxter; Aleksey Jironkin; R. D. G. Hickman; Jonathan D. Moore; Christopher Barrington; Peter Krusche; Nigel P. Dyer; Vicky Buchanan-Wollaston; Alexander Tiskin; Jim Beynon; Katherine J. Denby; Sascha Ott
This study identifies regions of noncoding DNA in dicot plants that are likely to facilitate complex regulation of genes by binding multiple transcription factors. Regulatory mechanisms that the model organism Arabidopsis is likely to share with crop plants provide a focus for research that has real-world applications. Conserved noncoding sequences (CNSs) in DNA are reliable pointers to regulatory elements controlling gene expression. Using a comparative genomics approach with four dicotyledonous plant species (Arabidopsis thaliana, papaya [Carica papaya], poplar [Populus trichocarpa], and grape [Vitis vinifera]), we detected hundreds of CNSs upstream of Arabidopsis genes. Distinct positioning, length, and enrichment for transcription factor binding sites suggest these CNSs play a functional role in transcriptional regulation. The enrichment of transcription factors within the set of genes associated with CNS is consistent with the hypothesis that together they form part of a conserved transcriptional network whose function is to regulate other transcription factors and control development. We identified a set of promoters where regulatory mechanisms are likely to be shared between the model organism Arabidopsis and other dicots, providing areas of focus for further research.
The Plant Cell | 2015
Laura A. Lewis; Krzysztof Polanski; Marta de Torres-Zabala; Siddharth Jayaraman; Laura Bowden; Jonathan D. Moore; Christopher A. Penfold; Dafyd J. Jenkins; Claire Hill; Laura Baxter; Satish Kulasekaran; William Truman; George R. Littlejohn; Justyna Prusinska; A. Mead; Jens Steinbrenner; Richard Hickman; David A. Rand; David L. Wild; Sascha Ott; Vicky Buchanan-Wollaston; Nicholas Smirnoff; Jim Beynon; Katherine J. Denby; Murray Grant
High-resolution microarray analysis of Pseudomonas syringae-inoculated Arabidopsis leaves reveals transcriptional dynamics underpinning basal defense and effector modulation leading to disease development. Transcriptional reprogramming is integral to effective plant defense. Pathogen effectors act transcriptionally and posttranscriptionally to suppress defense responses. A major challenge to understanding disease and defense responses is discriminating between transcriptional reprogramming associated with microbial-associated molecular pattern (MAMP)-triggered immunity (MTI) and that orchestrated by effectors. A high-resolution time course of genome-wide expression changes following challenge with Pseudomonas syringae pv tomato DC3000 and the nonpathogenic mutant strain DC3000hrpA- allowed us to establish causal links between the activities of pathogen effectors and suppression of MTI and infer with high confidence a range of processes specifically targeted by effectors. Analysis of this information-rich data set with a range of computational tools provided insights into the earliest transcriptional events triggered by effector delivery, regulatory mechanisms recruited, and biological processes targeted. We show that the majority of genes contributing to disease or defense are induced within 6 h postinfection, significantly before pathogen multiplication. Suppression of chloroplast-associated genes is a rapid MAMP-triggered defense response, and suppression of genes involved in chromatin assembly and induction of ubiquitin-related genes coincide with pathogen-induced abscisic acid accumulation. Specific combinations of promoter motifs are engaged in fine-tuning the MTI response and active transcriptional suppression at specific promoter configurations by P. syringae.