Vicky M. Avery
Griffith University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Vicky M. Avery.
Nature | 2010
W. Armand Guiguemde; Anang A. Shelat; David Bouck; Sandra Duffy; Gregory J. Crowther; Paul H. Davis; David C. Smithson; Michele C. Connelly; Julie Clark; Fangyi Zhu; María Belén Jiménez-Díaz; María Santos Martínez; Emily B. Wilson; Abhai K. Tripathi; Jiri Gut; Elizabeth R. Sharlow; Ian Bathurst; Farah El Mazouni; Joseph W. Fowble; Isaac P. Forquer; Paula L. McGinley; Steve Castro; Iñigo Angulo-Barturen; Santiago Ferrer; Philip J. Rosenthal; Joseph L. DeRisi; David J. Sullivan; John S. Lazo; David S. Roos; Michael K. Riscoe
Malaria caused by Plasmodium falciparum is a disease that is responsible for 880,000 deaths per year worldwide. Vaccine development has proved difficult and resistance has emerged for most antimalarial drugs. To discover new antimalarial chemotypes, we have used a phenotypic forward chemical genetic approach to assay 309,474 chemicals. Here we disclose structures and biological activity of the entire library—many of which showed potent in vitro activity against drug-resistant P. falciparum strains—and detailed profiling of 172 representative candidates. A reverse chemical genetic study identified 19 new inhibitors of 4 validated drug targets and 15 novel binders among 61 malarial proteins. Phylochemogenetic profiling in several organisms revealed similarities between Toxoplasma gondii and mammalian cell lines and dissimilarities between P. falciparum and related protozoans. One exemplar compound displayed efficacy in a murine model. Our findings provide the scientific community with new starting points for malaria drug discovery.
Science Translational Medicine | 2013
Aaron Nilsen; Alexis N. LaCrue; Karen L. White; Isaac P. Forquer; R. Matthew Cross; Jutta Marfurt; Michael W. Mather; Michael J. Delves; David M. Shackleford; Fabián E. Sáenz; Joanne M. Morrisey; Jessica Steuten; Tina Mutka; Yuexin Li; Grennady Wirjanata; Eileen Ryan; Sandra Duffy; Jane Xu Kelly; Boni F. Sebayang; Anne-Marie Zeeman; Rintis Noviyanti; Robert E. Sinden; Clemens H. M. Kocken; Ric N. Price; Vicky M. Avery; Iñigo Angulo-Barturen; María Belén Jiménez-Díaz; Santiago Ferrer; Esperanza Herreros; Laura Sanz
ELQ-300, an investigational drug for treating and preventing malaria, shows potent transmission-blocking activity in rodent models of malaria. Taking the Bite Out of Malaria Malaria is spread from person to person by mosquitoes that inject 8 to 10 sporozoite forms of the parasite in a single bite. The sporozoites reproduce in the liver to produce 10,000 to 30,000 merozoites before the liver schizont ruptures and parasites flood into the bloodstream where the absolute parasite burden may increase to a thousand billion (1012) circulating parasites. Some of these parasites develop into gametocytes that may be ingested by another mosquito where they progress through ookinete, oocyst, and sporozoite stages to complete the cycle. Like quinine, most antimalarial drugs in use today target only the symptomatic blood stage. The efficacy of these drugs has been compromised by resistance, and so there is a pressing need for new drugs that target multiple stages of the parasite life cycle for use in malaria treatment and prevention. Clearly, it is advantageous to strike at the liver stage where parasite numbers are low, to diminish the likelihood of selecting for a resistant mutant and before the infection has a chance to weaken the defenses of the human host. In a new study, Nilsen and colleagues describe ELQ-300, a 4(1H)-quinolone-3-diarylether, which targets the liver and blood stages, including the forms that are crucial to disease transmission (gametocytes, zygotes, and ookinetes). In mouse models of malaria, a single oral dose of 0.03 mg/kg prevented sporozoite-induced infections, whereas four daily doses of 1 mg/kg achieved complete cures of patent infections. ELQ-300 is a preclinical candidate that may be coformulated with other antimalarials to prevent and treat malaria, with the potential to aid in eradication of the disease. The goal for developing new antimalarial drugs is to find a molecule that can target multiple stages of the parasite’s life cycle, thus impacting prevention, treatment, and transmission of the disease. The 4(1H)-quinolone-3-diarylethers are selective potent inhibitors of the parasite’s mitochondrial cytochrome bc1 complex. These compounds are highly active against the human malaria parasites Plasmodium falciparum and Plasmodium vivax. They target both the liver and blood stages of the parasite as well as the forms that are crucial for disease transmission, that is, the gametocytes, the zygote, the ookinete, and the oocyst. Selected as a preclinical candidate, ELQ-300 has good oral bioavailability at efficacious doses in mice, is metabolically stable, and is highly active in blocking transmission in rodent models of malaria. Given its predicted low dose in patients and its predicted long half-life, ELQ-300 has potential as a new drug for the treatment, prevention, and, ultimately, eradication of human malaria.
Nature | 2015
Beatriz Baragaña; Irene Hallyburton; Marcus C. S. Lee; Neil R. Norcross; Raffaella Grimaldi; Thomas D. Otto; William R. Proto; Andrew M. Blagborough; Stephan Meister; Grennady Wirjanata; Andrea Ruecker; Leanna M. Upton; Tara S. Abraham; Mariana Justino de Almeida; Anupam Pradhan; Achim Porzelle; María Santos Martínez; Judith M. Bolscher; Andrew Woodland; Suzanne Norval; Fabio Zuccotto; John Thomas; Frederick R. C. Simeons; Laste Stojanovski; Maria Osuna-Cabello; Patrick M. Brock; Thomas S. Churcher; Katarzyna A. Sala; Sara E. Zakutansky; María Belén Jiménez-Díaz
There is an urgent need for new drugs to treat malaria, with broad therapeutic potential and novel modes of action, to widen the scope of treatment and to overcome emerging drug resistance. Here we describe the discovery of DDD107498, a compound with a potent and novel spectrum of antimalarial activity against multiple life-cycle stages of the Plasmodium parasite, with good pharmacokinetic properties and an acceptable safety profile. DDD107498 demonstrates potential to address a variety of clinical needs, including single-dose treatment, transmission blocking and chemoprotection. DDD107498 was developed from a screening programme against blood-stage malaria parasites; its molecular target has been identified as translation elongation factor 2 (eEF2), which is responsible for the GTP-dependent translocation of the ribosome along messenger RNA, and is essential for protein synthesis. This discovery of eEF2 as a viable antimalarial drug target opens up new possibilities for drug discovery.
Science Translational Medicine | 2015
Margaret A. Phillips; Julie Lotharius; Kennan Marsh; John White; Anthony Dayan; Karen L. White; Jacqueline W. Njoroge; Farah El Mazouni; Yanbin Lao; Sreekanth Kokkonda; Diana R. Tomchick; Xiaoyi Deng; Trevor Laird; Sangeeta N. Bhatia; Sandra March; Caroline L. Ng; David A. Fidock; Sergio Wittlin; Maria J. Lafuente-Monasterio; Francisco Javier Gamo–Benito; Laura Maria Sanz Alonso; María Santos Martínez; María Belén Jiménez-Díaz; Santiago Ferrer Bazaga; Iñigo Angulo-Barturen; John N. Haselden; James Louttit; Yi Cui; Arun Sridhar; Anna Marie Zeeman
The antimalarial drug DSM265 displays activity against blood and liver stages of Plasmodium falciparum and has a long predicted half-life in humans. Long-acting new treatment for drug-resistant malaria Malaria kills 0.6 million people annually, yet current malaria drugs are no longer fully effective because the parasite that causes malaria is becoming resistant to these agents. Phillips et al. have identified a new drug that kills both drug-sensitive and drug-resistant malaria parasites by targeting the ability of the parasite to synthesize the nucleotide precursors required for synthesis of DNA and RNA. This drug kills parasites in both the blood and liver and is sufficiently long-acting that it is expected to cure malaria after a single dose or to be effective if dosed weekly for chemoprevention. Malaria is one of the most significant causes of childhood mortality, but disease control efforts are threatened by resistance of the Plasmodium parasite to current therapies. Continued progress in combating malaria requires development of new, easy to administer drug combinations with broad-ranging activity against all manifestations of the disease. DSM265, a triazolopyrimidine-based inhibitor of the pyrimidine biosynthetic enzyme dihydroorotate dehydrogenase (DHODH), is the first DHODH inhibitor to reach clinical development for treatment of malaria. We describe studies profiling the biological activity, pharmacological and pharmacokinetic properties, and safety of DSM265, which supported its advancement to human trials. DSM265 is highly selective toward DHODH of the malaria parasite Plasmodium, efficacious against both blood and liver stages of P. falciparum, and active against drug-resistant parasite isolates. Favorable pharmacokinetic properties of DSM265 are predicted to provide therapeutic concentrations for more than 8 days after a single oral dose in the range of 200 to 400 mg. DSM265 was well tolerated in repeat-dose and cardiovascular safety studies in mice and dogs, was not mutagenic, and was inactive against panels of human enzymes/receptors. The excellent safety profile, blood- and liver-stage activity, and predicted long half-life in humans position DSM265 as a new potential drug combination partner for either single-dose treatment or once-weekly chemoprevention. DSM265 has advantages over current treatment options that are dosed daily or are inactive against the parasite liver stage.
Organic Letters | 2009
Liza Fernandez; Malcolm Stewart Buchanan; Anthony Richard Carroll; Yunjiang Feng; Ronald J. Quinn; Vicky M. Avery
With the aim of finding new natural product antimalarials, the novel indole alkaloids flinderole A-C were found to have selective antimalarial activities with IC(50) values between 0.15-1.42 microM. Flinderole A was isolated from the Australian plant Flindersia acuminata and flinderoles B and C from the Papua New Guinean plant F. amboinensis. Flinderoles A-C contain an unprecedented rearranged skeleton compared to their related isomers of the borreverine class of compounds.
Proceedings of the National Academy of Sciences of the United States of America | 2014
María Belén Jiménez-Díaz; Daniel H. Ebert; Yandira Salinas; Anupam Pradhan; Adele M. Lehane; Marie-Eve Myrand-Lapierre; Kathleen O’Loughlin; David M. Shackleford; Mariana Justino de Almeida; Angela K. Carrillo; Julie Clark; Adelaide S. M. Dennis; Jonathon Diep; Xiaoyan Deng; Sandra Duffy; Aaron N. Endsley; Greg Fedewa; W. Armand Guiguemde; María G. Gómez; Gloria Holbrook; Jeremy A. Horst; Charles C. Kim; Jian Liu; Marcus C. S. Lee; Amy Matheny; María Santos Martínez; Gregory Miller; Ane Rodríguez-Alejandre; Laura Sanz; Martina Sigal
Significance Useful antimalarial drugs must be rapidly acting, highly efficacious, and have low potential for developing resistance. (+)-SJ733 targets a Plasmodium cation-transporting ATPase, ATP4. (+)-SJ733 cleared parasites in vivo as quickly as artesunate by specifically inducing eryptosis/senescence in infected, treated erythrocytes. Although in vitro selection of pfatp4 mutants with (+)-SJ733 proceeded with moderate frequency, during in vivo selection of pbatp4 mutants, resistance emerged slowly and produced marginally resistant mutants with poor fitness. In addition, (+)-SJ733 met all other criteria for a clinical candidate, including high oral bioavailability, a high safety margin, and transmission blocking activity. These results demonstrate that targeting ATP4 has great potential to deliver useful drugs for malaria eradication. Drug discovery for malaria has been transformed in the last 5 years by the discovery of many new lead compounds identified by phenotypic screening. The process of developing these compounds as drug leads and studying the cellular responses they induce is revealing new targets that regulate key processes in the Plasmodium parasites that cause malaria. We disclose herein that the clinical candidate (+)-SJ733 acts upon one of these targets, ATP4. ATP4 is thought to be a cation-transporting ATPase responsible for maintaining low intracellular Na+ levels in the parasite. Treatment of parasitized erythrocytes with (+)-SJ733 in vitro caused a rapid perturbation of Na+ homeostasis in the parasite. This perturbation was followed by profound physical changes in the infected cells, including increased membrane rigidity and externalization of phosphatidylserine, consistent with eryptosis (erythrocyte suicide) or senescence. These changes are proposed to underpin the rapid (+)-SJ733-induced clearance of parasites seen in vivo. Plasmodium falciparum ATPase 4 (pfatp4) mutations that confer resistance to (+)-SJ733 carry a high fitness cost. The speed with which (+)-SJ733 kills parasites and the high fitness cost associated with resistance-conferring mutations appear to slow and suppress the selection of highly drug-resistant mutants in vivo. Together, our data suggest that inhibitors of PfATP4 have highly attractive features for fast-acting antimalarials to be used in the global eradication campaign.
Malaria Journal | 2013
Sandra Duffy; Vicky M. Avery
BackgroundPlasmodium falciparum gametocytes, specifically mature stages, are the only stage in man transmissible to the mosquito vector responsible for malaria transmission. Anti-malarial drugs capable of killing these forms are considered essential for the eradication of malaria. The comprehensive profiling of in vitro activity of anti-malarial compounds against both early (I-III) and late (IV-V) stage P. falciparum gametocytes, along with the high throughput screening (HTS) outcomes from the MMV malaria box are described.MethodTwo anti-gametocyte HTS assays based on confocal fluorescence microscopy, utilizing both a gametocyte specific protein (pfs16-Luc-GFP) and a viability marker (MitoTracker Red CM-H2XRos) (MTR), were used for the measurement of anti-gametocytocidal activity. This combination provided a direct observation of gametocyte number per assay well, whilst defining the viability of each gametocyte imaged.ResultsIC50 values were obtained for 36 current anti-malarial compounds for activities against asexual, early and late stage gametocytes. The MMV malaria box was screened and actives progressed for IC50 evaluation. Seven % of the “drug-like” and 21% of the “probe-like” compounds from the MMV malaria box demonstrated equivalent activity against both asexual and late stage gametocytes.ConclusionsThe assays described were shown to selectively identify compounds with gametocytocidal activity and have been demonstrated suitable for HTS with the capability of screening in the order of 20,000 compounds per screening campaign, two to three times per seven-day week.
Biology | 2014
Carrie J. Lovitt; Todd Shelper; Vicky M. Avery
Human cancer cell lines are an integral part of drug discovery practices. However, modeling the complexity of cancer utilizing these cell lines on standard plastic substrata, does not accurately represent the tumor microenvironment. Research into developing advanced tumor cell culture models in a three-dimensional (3D) architecture that more prescisely characterizes the disease state have been undertaken by a number of laboratories around the world. These 3D cell culture models are particularly beneficial for investigating mechanistic processes and drug resistance in tumor cells. In addition, a range of molecular mechanisms deconstructed by studying cancer cells in 3D models suggest that tumor cells cultured in two-dimensional monolayer conditions do not respond to cancer therapeutics/compounds in a similar manner. Recent studies have demonstrated the potential of utilizing 3D cell culture models in drug discovery programs; however, it is evident that further research is required for the development of more complex models that incorporate the majority of the cellular and physical properties of a tumor.
Journal of Medicinal Chemistry | 2012
Yassir Younis; Frederic Douelle; Tzu-Shean Feng; Diego Gonzàlez Cabrera; Claire Le Manach; Aloysius T. Nchinda; Sandra Duffy; Karen L. White; David M. Shackleford; Julia Morizzi; Janne Mannila; Kasiram Katneni; Ravi K. Bhamidipati; K. Mohammed Zabiulla; Jayan T. Joseph; Sridevi Bashyam; David Waterson; Michael J. Witty; David Hardick; Sergio Wittlin; Vicky M. Avery; Susan A. Charman; Kelly Chibale
A novel class of orally active antimalarial 3,5-diaryl-2-aminopyridines has been identified from phenotypic whole cell high-throughput screening of a commercially available SoftFocus kinase library. The compounds were evaluated in vitro for their antiplasmodial activity against K1 (chloroquine and drug-resistant strain) and NF54 (chloroquine-susceptible strain) as well as for their cytotoxicity. Synthesis and structure-activity studies identified a number of promising compounds with selective antiplasmodial activity. One of these frontrunner compounds, 15, was equipotent across the two strains (K1 = 25.0 nM, NF54 = 28.0 nM) and superior to chloroquine in the K1 strain (chloroquine IC(50) K1 = 194.0 nM). Compound 15 completely cured Plasmodium berghei-infected mice with a single oral dose of 30 mg/kg. Dose-response studies generated ED(50) and ED(90) values of 0.83 and 1.74 mg/kg for 15 in the standard four-dose Peters test. Pharmacokinetic studies in the rat indicated that this compound has good oral bioavailability (51% at 20 mg/kg) and a reasonable half-life (t(1/2) ∼ 7-8 h).
Antimicrobial Agents and Chemotherapy | 2013
Leonardo Lucantoni; Sandra Duffy; Sophie H. Adjalley; David A. Fidock; Vicky M. Avery
ABSTRACT The design of new antimalarial combinations to treat Plasmodium falciparum infections requires drugs that, in addition to resolving disease symptoms caused by asexual blood stage parasites, can also interrupt transmission to the mosquito vector. Gametocytes, which are essential for transmission, develop as sexual blood stage parasites in the human host over 8 to 12 days and are the most accessible developmental stage for transmission-blocking drugs. Considerable effort is currently being devoted to identifying compounds active against mature gametocytes. However, investigations on the drug sensitivity of developing gametocytes, as well as screening methods for identifying inhibitors of early gametocytogenesis, remain scarce. We have developed a luciferase-based high-throughput screening (HTS) assay using tightly synchronous stage I to III gametocytes from a recombinant P. falciparum line expressing green fluorescent protein (GFP)-luciferase. The assay has been used to evaluate the early-stage gametocytocidal activity of the MMV Malaria Box, a collection of 400 compounds with known antimalarial (asexual blood stage) activity. Screening this collection against early-stage (I to III) gametocytes yielded 64 gametocytocidal compounds with 50% inhibitory concentrations (IC50s) below 2.5 μM. This assay is reproducible and suitable for the screening of large compound libraries, with an average percent coefficient of variance (%CV) of ≤5%, an average signal-to-noise ratio (S:N) of >30, and a Z′ of ∼0.8. Our findings highlight the need for screening efforts directed specifically against early gametocytogenesis and indicate the importance of experimental verification of early-stage gametocytocidal activity in the development of new antimalarial candidates for combination therapy.