Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Victor A. Cazares is active.

Publication


Featured researches published by Victor A. Cazares.


Neuropsychopharmacology | 2010

Reversal-Specific Learning Impairments After a Binge Regimen of Methamphetamine in Rats: Possible Involvement of Striatal Dopamine

Alicia Izquierdo; Annabelle M. Belcher; Lori Scott; Victor A. Cazares; Jack Chen; Steven J. O'Dell; Melissa Malvaez; Tiffany Wu; John F. Marshall

A growing body of evidence indicates that protracted use of methamphetamine (mAMPH) causes long-term impairments in cognitive function in humans. Aside from the widely reported problems with attention, mAMPH users exhibit learning and memory deficits, particularly on tasks requiring response control. Although binge mAMPH administration to animals results in cognitive deficits, few studies have attempted to test behavioral flexibility in animals after mAMPH exposure. The aim of this study was to evaluate whether mAMPH would produce impairments in two tasks assessing flexible responding in rats: a touchscreen-based discrimination-reversal learning task and an attentional set shift task (ASST) based on a hallmark test of executive function in humans, the Wisconsin Card Sort. We treated male Long-Evans rats with a regimen of four injections of 2 mg/kg mAMPH (or vehicle) within a single day, a dosing regimen shown earlier to produce object recognition impairments. We then tested them on (1) reversal learning after pretreatment discrimination learning or (2) the ASST. Early reversal learning accuracy was impaired in mAMPH-treated rats. MAMPH pretreatment also selectively impaired reversal performance during ASST testing, leaving set-shifting performance intact. Postmortem analysis of [125I]RTI-55 binding revealed small (10–20%) but significant reductions in striatal dopamine transporters produced by this mAMPH regimen. Together, these results lend new information to the growing field documenting impaired cognition after mAMPH exposure, and constitute a rat model of the widely reported decision-making deficits resulting from mAMPH abuse seen in humans.


Nature Communications | 2014

Pharmacological correction of obesity-induced autophagy arrest using calcium channel blockers

Hwan Woo Park; Haeli Park; Ian A. Semple; Insook Jang; Seung Hyun Ro; Myung-Jin Kim; Victor A. Cazares; Edward L. Stuenkel; Jung Jae Kim; Jeong Sig Kim; Jun Hee Lee

Autophagy deregulation during obesity contributes to the pathogenesis of diverse metabolic disorders. However, without understanding the molecular mechanism of obesity interference in autophagy, development of therapeutic strategies for correcting such defects in obese individuals is challenging. Here we show that chronic increase of cytosolic calcium concentration in hepatocytes upon obesity and lipotoxicity attenuates autophagic flux by preventing the fusion between autophagosomes and lysosomes. As a pharmacological approach to restore cytosolic calcium homeostasis in vivo, we administered the clinically approved calcium channel blocker verapamil to obese mice. Such treatment successfully increases autophagosome-lysosome fusion in liver, preventing accumulation of protein inclusions and lipid droplets and suppressing inflammation and insulin resistance. As calcium channel blockers have been safely used in clinics for the treatment of hypertension for more than thirty years, our results suggest they may be a safe therapeutic option for restoring autophagic flux and treating metabolic pathologies in obese patients.


The Journal of Neuroscience | 2013

Basolateral Amygdala Lesions Facilitate Reward Choices after Negative Feedback in Rats

Alicia Izquierdo; Chelsi Darling; Nic Manos; Hilda Pozos; Charissa Kim; Serena Ostrander; Victor A. Cazares; Haley Stepp; Peter H. Rudebeck

The orbitofrontal cortex (OFC) and basolateral amygdala (BLA) constitute part of a neural circuit important for adaptive, goal-directed learning. One task measuring flexibility of response to changes in reward is discrimination reversal learning. Damage to OFC produces well documented impairments on various forms of reversal learning in rodents, monkeys, and humans. Recent reports show that BLA, though highly interconnected with OFC, may be differentially involved in reversal learning. In the present experiment, we compared the effects of bilateral, ibotenic acid lesions of OFC or BLA (or SHAM) on visual discrimination and reversal learning. Specifically, we used pairwise visual discrimination methods, as is commonly administered in non-human primate studies, and analyzed how animals use positive and negative trial-by-trial feedback, domains not previously explored in a rat study. As expected, OFC lesions displayed significantly slower reversal learning than SHAM and BLA rats across sessions. Rats with BLA lesions, conversely, showed facilitated reversal learning relative to SHAM and OFC groups. Furthermore, a trial-by-trial analysis of the errors committed showed the BLA group benefited more from incorrectly performed trials (or negative feedback) on future choices than either SHAM or OFC rats. This provides evidence that BLA and OFC are involved in updating responses to changes in reward contingency and that the roles are distinct. Our results are discussed in relation to a competitive framework model for OFC and BLA in reward processing.


Behavioral Neuroscience | 2011

Orbitofrontal cortex and basolateral amygdala lesions result in suboptimal and dissociable reward choices on cue-guided effort in rats.

Serena Ostrander; Victor A. Cazares; Charissa Kim; Shauna Cheung; Isabel Gonzalez; Alicia Izquierdo

The orbitofrontal cortex (OFC) and basolateral nucleus of the amygdala (BLA) are important neural regions in responding adaptively to changes in the incentive value of reward. Recent evidence suggests these structures may be differentially engaged in effort and cue-guided choice behavior. In 2 T-maze experiments, we examined the effects of bilateral lesions of either BLA or OFC on (1) effortful choices in which rats could climb a barrier for a high reward or select a low reward with no effort and (2) effortful choices when a visual cue signaled changes in reward magnitude. In both experiments, BLA rats displayed transient work aversion, choosing the effortless low reward option. OFC rats were work averse only in the no cue conditions, displaying a pattern of attenuated recovery from the cue conditions signaling reward unavailability in the effortful arm. Control measures rule out an inability to discriminate the cue in either lesion group.


Traffic | 2014

Distinct Actions of Rab3 and Rab27 GTPases on Late Stages of Exocytosis of Insulin

Victor A. Cazares; Arasakumar Subramani; Johnny J. Saldate; Widmann W. Hoerauf; Edward L. Stuenkel

Rab GTPases associated with insulin‐containing secretory granules (SGs) are key in targeting, docking and assembly of molecular complexes governing pancreatic β‐cell exocytosis. Four Rab3 isoforms along with Rab27A are associated with insulin granules, yet elucidation of the distinct roles of these Rab families on exocytosis remains unclear. To define specific actions of these Rab families we employ Rab3GAP and/or EPI64A GTPase‐activating protein overexpression in β‐cells from wild‐type or Ashen mice to selectively transit the entire Rab3 family or Rab27A to a GDP‐bound state. Ashen mice carry a spontaneous mutation that eliminates Rab27A expression. Using membrane capacitance measurements we find that GTP/GDP nucleotide cycling of Rab27A is essential for generation of the functionally defined immediately releasable pool (IRP) and central to regulating the size of the readily releasable pool (RRP). By comparison, nucleotide cycling of Rab3 GTPases, but not of Rab27A, is essential for a kinetically rapid filling of the RRP with SGs. Aside from these distinct functions, Rab3 and Rab27A GTPases demonstrate considerable functional overlap in building the readily releasable granule pool. Hence, while Rab3 and Rab27A cooperate to generate release‐ready SGs in β‐cells, they also direct unique kinetic and functional properties of the exocytotic pathway.


The Journal of Neuroscience | 2016

Dynamic partitioning of synaptic vesicle pools by the snare-binding protein tomosyn

Victor A. Cazares; Meredith M. Njus; Amanda Manly; Johnny J. Saldate; Arasakumar Subramani; Yoav Ben-Simon; Michael A. Sutton; Uri Ashery; Edward L. Stuenkel

Neural networks engaged in high-frequency activity rely on sustained synaptic vesicle recycling and coordinated recruitment from functionally distinct synaptic vesicle (SV) pools. However, the molecular pathways matching neural activity to SV dynamics and release requirements remain unclear. Here we identify unique roles of SNARE-binding Tomosyn1 (Tomo1) proteins as activity-dependent substrates that regulate dynamics of SV pool partitioning at rat hippocampal synapses. Our analysis is based on monitoring changes in distinct functionally defined SV pools via V-Glut1-pHluorin fluorescence in cultured hippocampal neurons in response to alterations in presynaptic protein expression. Specifically, we find knockdown of Tomo1 facilitates release efficacy from the Readily Releasable Pool (RRP), and regulates SV distribution to the Total Recycling Pool (TRP), which is matched by a decrease in the SV Resting Pool. Notably, these effects were reversed by Tomo1 rescue and overexpression. Further, we identify that these actions of Tomo1 are regulated via activity-dependent phosphorylation by cyclin-dependent kinase 5 (Cdk5). Assessment of molecular interactions that may contribute to these actions identified Tomo1 interaction with the GTP-bound state of Rab3A, an SV GTPase involved in SV targeting and presynaptic membrane tethering. In addition, Tomo1 via Rab3A-GTP was also observed to interact with Synapsin 1a/b cytoskeletal interacting proteins. Finally, our data indicate that Tomo1 regulation of SV pool sizes serves to adapt presynaptic neurotransmitter release to chronic silencing of network activity. Overall, the results establish Tomo1 proteins as central mediators in neural activity-dependent changes in SV distribution among SV pools. SIGNIFICANCE STATEMENT Although information transfer at central synapses via sustained high-frequency neural activity requires coordinated synaptic vesicle (SV) recycling, the mechanism(s) by which synapses sense and dynamically modify SV pools to match network demands remains poorly defined. To advance understanding, we quantified SV pool sizes and their sensitivity to neural activity while altering Tomo1 expression, a putative regulator of the presynaptic Readily Releasable Pool. Remarkably, we find Tomo1 actions to extend beyond the Readily Releasable Pool to mediate the Total Recycling Pool and SV Resting Pool distribution, and this action is sensitive to neural activity through Cdk5 phosphorylation of Tomo1. Moreover, Tomo1 appears to exert these actions through interaction with Rab3A-GTP and synapsin proteins. Together, our results argue that Tomo1 is a central mediator of SV availability for neurotransmission.


PLOS ONE | 2015

CUL4-DDB1-CDT2 E3 Ligase Regulates the Molecular Clock Activity by Promoting Ubiquitination-Dependent Degradation of the Mammalian CRY1

Xin Tong; Deqiang Zhang; Anirvan Guha; Blake Arthurs; Victor A. Cazares; Neil Gupta; Lei Yin

The CUL4-DDB1 E3 ligase complex serves as a critical regulator in various cellular processes, including cell proliferation, DNA damage repair, and cell cycle progression. However, whether this E3 ligase complex regulates clock protein turnover and the molecular clock activity in mammalian cells is unknown. Here we show that CUL4-DDB1-CDT2 E3 ligase ubiquitinates CRY1 and promotes its degradation both in vitro and in vivo. Depletion of the major components of this E3 ligase complex, including Ddb1, Cdt2, and Cdt2-cofactor Pcna, leads to CRY1 stabilization in cultured cells or in the mouse liver. CUL4A-DDB1-CDT2 E3 ligase targets lysine 585 within the C-terminal region of CRY1 protein, shown by the CRY1 585KA mutant’s resistance to ubiquitination and degradation mediated by the CUL4A-DDB1 complex. Surprisingly, both depletion of Ddb1 and over-expression of Cry1-585KA mutant enhance the oscillatory amplitude of the Bmal1 promoter activity without altering its period length, suggesting that CUL4A-DDB1-CDT2 E3 targets CRY1 for degradation and reduces the circadian amplitude. All together, we uncovered a novel biological role for CUL4A-DDB1-CDT2 E3 ligase that regulates molecular circadian behaviors via promoting ubiquitination-dependent degradation of CRY1.


Journal of Biological Chemistry | 2017

The ubiquitin-proteasome system functionally links neuronal Tomosyn-1 to dendritic morphology

Johnny J. Saldate; Jason Shiau; Victor A. Cazares; Edward L. Stuenkel

Altering the expression of Tomosyn-1 (Tomo-1), a soluble, R-SNARE domain–containing protein, significantly affects behavior in mice, Drosophila, and Caenorhabditis elegans. Yet, the mechanisms that modulate Tomo-1 expression and its regulatory activity remain poorly defined. Here, we found that Tomo-1 expression levels influence postsynaptic spine density. Tomo-1 overexpression increased dendritic spine density, whereas Tomo-1 knockdown (KD) decreased spine density. These findings identified a novel action of Tomo-1 on dendritic spines, which is unique because it occurs independently of Tomo-1s C-terminal R-SNARE domain. We also demonstrated that the ubiquitin-proteasome system (UPS), which is known to influence synaptic strength, dynamically regulates Tomo-1 protein levels. Immunoprecipitated and affinity-purified Tomo-1 from cultured rat hippocampal neurons was ubiquitinated, and the levels of ubiquitinated Tomo-1 dramatically increased upon pharmacological proteasome blockade. Moreover, Tomo-1 ubiquitination appeared to be mediated through an interaction with the E3 ubiquitin ligase HRD1, as immunoprecipitation of Tomo-1 from neurons co-precipitated HRD1, and this interaction increases upon proteasome inhibition. Further, in vitro reactions indicated direct, HRD1 concentration–dependent Tomo-1 ubiquitination. We also noted that the UPS regulates both Tomo-1 expression and functional output, as HRD1 KD in hippocampal neurons increased Tomo-1 protein level and dendritic spine density. Notably, the effect of HRD1 KD on spine density was mitigated by additional KD of Tomo-1, indicating a direct HRD1/Tomo-1 effector relationship. In summary, our results indicate that the UPS is likely to participate in tuning synaptic efficacy and spine dynamics by precise regulation of neuronal Tomo-1 levels.


Biological Psychiatry | 2018

T101. Accelerated Maturation Phenotypes in Patient-Derived Cell Models of Bipolar Disorder

Aislinn J. Williams; Monica Bame; Cynthia J. DeLong; Katarzyna Glanowska; Victor A. Cazares; Rasika Dhond; Austin Smarsh; Cousineau Eric; Emily Martinez; Kim-Chew Lim; Geoffrey G. Murphy; K. Sue O'Shea


Biological Psychiatry | 2017

716. Abnormal Calcium Signaling Dynamics in iPSC-Derived Bipolar Disorder Neurons

Aislinn J. Williams; Austin Smarsh; Victor A. Cazares; Katarzyna Glanowska; Cynthia J. DeLong; Monica Bame; Emily Martinez; Kim-Chew Lim; Rachel Parent; Edward L. Stuenkel; Melvin G. McInnis; Geoffrey G. Murphy; K. Sue O’Shea

Collaboration


Dive into the Victor A. Cazares's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Charissa Kim

California State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge