Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Victor Faundez is active.

Publication


Featured researches published by Victor Faundez.


Journal of Cell Biology | 2003

Cellular levels of p120 catenin function as a set point for cadherin expression levels in microvascular endothelial cells

Kanyan Xiao; David F. Allison; Kathleen M. Buckley; Margaret D. Kottke; Peter A. Vincent; Victor Faundez; Andrew P. Kowalczyk

The mechanisms by which catenins regulate cadherin function are not fully understood, and the precise function of p120 catenin (p120ctn) has remained particularly elusive. In microvascular endothelial cells, p120ctn colocalized extensively with cell surface VE-cadherin, but failed to colocalize with VE-cadherin that had entered intracellular degradative compartments. To test the possibility that p120ctn binding to VE-cadherin regulates VE-cadherin internalization, a series of approaches were undertaken to manipulate p120ctn availability to endogenous VE-cadherin. Expression of VE-cadherin mutants that competed for p120ctn binding triggered the degradation of endogenous VE-cadherin. Similarly, reducing levels of p120ctn using siRNA caused a dramatic and dose-related reduction in cellular levels of VE-cadherin. In contrast, overexpression of p120ctn increased VE-cadherin cell surface levels and inhibited entry of cell surface VE-cadherin into degradative compartments. These results demonstrate that cellular levels of p120ctn function as a set point mechanism that regulates cadherin expression levels, and that a major function of p120ctn is to control cadherin internalization and degradation.


Cell | 1998

A Function for the AP3 Coat Complex in Synaptic Vesicle Formation from Endosomes

Victor Faundez; Jim-Tong Horng; Regis B. Kelly

Synaptic vesicles can be coated in vitro in a reaction that is ARF-, ATP-, and temperature-dependent and requires synaptic vesicle membrane proteins. The coat is largely made up of the heterotetrameric complex, adaptor protein 3, recently implicated in Golgi-to-vacuole traffic in yeast. Depletion of AP3 from brain cytosol inhibits small vesicle formation from PC12 endosomes in vitro. Budding from washed membranes can be reconstituted with purified AP3 and recombinant ARF1. We conclude that AP3 coating is involved in at least one pathway of small vesicle formation from endosomes.


Journal of Cell Biology | 2012

p120-catenin binding masks an endocytic signal conserved in classical cadherins.

Benjamin A. Nanes; Christine Chiasson-MacKenzie; Anthony M. Lowery; Noboru Ishiyama; Victor Faundez; Mitsuhiko Ikura; Peter A. Vincent; Andrew P. Kowalczyk

p120 regulates adhesive junction dynamics through binding to a dual-function motif in classical cadherins that alternately serves as a p120-binding interface and an endocytic signal.


Journal of Cell Science | 2007

Neuronal and non-neuronal functions of the AP-3 sorting machinery.

Karen A. Newell-Litwa; Eunju Seong; Margit Burmeister; Victor Faundez

Vesicles selectively exchange lipids, membrane proteins and luminal contents between organelles along the exocytic and endocytic routes. The repertoire of membrane proteins present in these vesicles is crucial for their targeting and function. Vesicle composition is determined at the time of their biogenesis by cytosolic coats. The heterotetrameric protein adaptor protein complex 3 (AP-3), a coat component, participates in the generation of a diverse group of secretory organelles and lysosome-related organelles. Recent work has shed light on the mechanisms that regulate AP-3 and the trafficking pathways controlled by this adaptor. Phenotypic analysis of organisms carrying genetic deficiencies in the AP-3 pathway highlight its role regulating the targeting of lysosomal, melanosomal and synaptic vesicle-specific membrane proteins. Synaptic vesicles from AP-3-deficient mice possess altered levels of neurotransmitter and ion transporters, molecules that ultimately define the type and amount of neurotransmitter stored in these vesicles. These findings reveal a complex picture of how AP-3 functions in multiple tissues, including neuronal tissue, and expose potential links between endocytic sorting mechanisms and the pathogenesis of psychiatric disorders such as schizophrenia.


Molecular Biology of the Cell | 2008

Phosphatidylinositol-4-Kinase Type II Alpha Contains an AP-3–sorting Motif and a Kinase Domain That Are Both Required for Endosome Traffic

Branch Craige; Gloria Salazar; Victor Faundez

The adaptor complex 3 (AP-3) targets membrane proteins from endosomes to lysosomes, lysosome-related organelles and synaptic vesicles. Phosphatidylinositol-4-kinase type II alpha (PI4KIIalpha) is one of several proteins possessing catalytic domains that regulate AP-3-dependent sorting. Here we present evidence that PI4KIIalpha uniquely behaves both as a membrane protein cargo as well as an enzymatic regulator of adaptor function. In fact, AP-3 and PI4KIIalpha form a complex that requires a dileucine-sorting motif present in PI4KIIalpha. Mutagenesis of either the PI4KIIalpha-sorting motif or its kinase-active site indicates that both are necessary to interact with AP-3 and properly localize PI4KIIalpha to LAMP-1-positive endosomes. Similarly, both the kinase activity and the sorting signal present in PI4KIIalpha are necessary to rescue endosomal PI4KIIalpha siRNA-induced mutant phenotypes. We propose a mechanism whereby adaptors use canonical sorting motifs to selectively recruit a regulatory enzymatic activity to restricted membrane domains.


Journal of Biological Chemistry | 2008

Pemphigus Vulgaris IgG-induced Desmoglein-3 Endocytosis and Desmosomal Disassembly Are Mediated by a Clathrin-and Dynamin-independent Mechanism

Emmanuella Delva; Jean Marie Jennings; Cathárine C. Calkins; Margaret D. Kottke; Victor Faundez; Andrew P. Kowalczyk

Pemphigus vulgaris (PV) is a life-threatening autoimmune disease characterized by oral mucosal erosions and epidermal blistering. The autoantibodies generated target the desmosomal cadherin desmoglein-3 (Dsg3). Previous studies demonstrate that upon PV IgG binding, Dsg3 is internalized and enters an endo-lysosomal pathway where it is degraded. To define the endocytic machinery involved in PV IgG-induced Dsg3 internalization, human keratinocytes were incubated with PV IgG, and various tools were used to perturb distinct endocytic pathways. The PV IgG ·Dsg3 complex failed to colocalize with clathrin, and inhibitors of clathrin- and dynamin-dependent pathways had little or no effect on Dsg3 internalization. In contrast, cholesterol binding agents such as filipin and nystatin and the tyrosine kinase inhibitor genistein dramatically inhibited Dsg3 internalization. Furthermore, the Dsg3 cytoplasmic tail specified sensitivity to these inhibitors. Moreover, inhibition of Dsg3 endocytosis with genistein prevented disruption of desmosomes and loss of adhesion in the presence of PV IgG. Altogether, these results suggest that PV IgG-induced Dsg3 internalization is mediated through a clathrin- and dynamin-independent pathway and that Dsg3 endocytosis is tightly coupled to the pathogenic activity of PV IgG.


Nature Neuroscience | 1998

A v-SNARE participates in synaptic vesicle formation mediated by the AP3 adaptor complex.

Natalie Salem; Victor Faundez; Jim-Tong Horng; Regis B. Kelly

Reconstitution of synaptic vesicle formation in vitro has revealed a pathway of synaptic vesicle biogenesis from endosomes that requires the heterotetrameric adaptor complex AP3. Because synaptic vesicles have a distinct protein composition, the AP3 complex should selectively recognize some or all of the synaptic vesicle proteins. Here we show that one element of this recognition process is the v-SNARE, VAMP-2, because tetanus toxin, which cleaves VAMP-2, inhibited the formation of synaptic vesicles and their coating with AP3 in vitro. Mutant tetanus toxin and botulinum toxins, which cleave t-SNAREs, did not inhibit synaptic vesicle production. AP3-containing complexes isolated from coated vesicles could be immunoprecipitated by a VAMP-2 antibody. These data imply that AP3 recognizes a component of the fusion machinery, which may prevent the production of inert synaptic vesicles.


Traffic | 2005

Intermediate Filaments and Vesicular Membrane Traffic: The Odd Couple's First Dance?

Melanie L. Styers; Andrew P. Kowalczyk; Victor Faundez

During the last two decades, much attention has been focused on the regulation of membrane traffic by the actin and microtubule cytoskeletal networks. Their dynamic and polarized behavior and associated motors provide a logical framework from which architectural and movement cues can be communicated to organelles. The study of these cytoskeletal systems has been greatly aided by pharmacological agents. In contrast, intermediate filaments (IFs) have largely been neglected as a potential player in membrane traffic, both because a comprehensive pharmacology to perturb them does not exist and because they lack the intrinsic polarity and specific motors that make the other cytoskeletal systems attractive. In this review, we will discuss evidence suggesting that IFs may play roles in controlling organelle positioning and in membrane protein targeting. Furthermore, we will discuss potential mechanisms by which IFs may regulate the localization and function of organelles.


Molecular Biology of the Cell | 2009

p120-Catenin Inhibits VE-Cadherin Internalization through a Rho-independent Mechanism

Christine M. Chiasson; Kristin B. Wittich; Peter A. Vincent; Victor Faundez; Andrew P. Kowalczyk

p120-catenin is a cytoplasmic binding partner of cadherins and functions as a set point for cadherin expression by preventing cadherin endocytosis, and degradation. p120 is known to regulate cell motility and invasiveness by inhibiting RhoA activity. However, the relationship between these functions of p120 is not understood. Here, we provide evidence that p120 functions as part of a plasma membrane retention mechanism for VE-cadherin by preventing the recruitment of VE-cadherin into membrane domains enriched in components of the endocytic machinery, including clathrin and the adaptor complex AP-2. The mechanism by which p120 regulates VE-cadherin entry into endocytic compartments is dependent on p120s interaction with the cadherin juxtamembrane domain, but occurs independently of p120s prevention of Rho GTPase activity. These findings clarify the mechanism for p120s function in stabilizing VE-cadherin at the plasma membrane and demonstrate a novel role for p120 in modulating the availability of cadherins for entry into a clathrin-dependent endocytic pathway.


American Journal of Human Genetics | 2006

A Mutation of β-Actin That Alters Depolymerization Dynamics Is Associated with Autosomal Dominant Developmental Malformations, Deafness, and Dystonia

Vincent Procaccio; Gloria Salazar; Shoichiro Ono; Melanie L. Styers; Marla Gearing; Antonio Davila; Richard Jimenez; Jorge L. Juncos; Claire-Anne Gutekunst; Germana Meroni; Bianca Fontanella; Estelle Sontag; Jean Marie Sontag; Victor Faundez; Bruce H. Wainer

Actin, one of the major filamentous cytoskeletal molecules, is involved in a variety of cellular functions. Whereas an association between muscle actin mutations and skeletal and cardiac myopathies has been well documented, reports of human disease arising from mutations of nonmuscle actin genes have been rare. We have identified a missense point mutation in the gene coding for beta -actin that results in an arginine-to-tryptophan substitution at position 183. The disease phenotype includes developmental midline malformations, sensory hearing loss, and a delayed-onset generalized dystonia syndrome in monozygotic twins. Cellular studies of a lymphoblastoid cell line obtained from an affected patient demonstrated morphological abnormalities of the actin cytoskeleton and altered actin depolymerization dynamics in response to latrunculin A, an actin monomer-sequestering drug. Resistance to latrunculin A was also observed in NIH 3T3 cells expressing the mutant actin. These findings suggest that mutations in nonmuscle actins may be associated with a broad spectrum of developmental malformations and/or neurological abnormalities such as dystonia.

Collaboration


Dive into the Victor Faundez's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Branch Craige

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge