Victor Frak
Université du Québec à Montréal
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Victor Frak.
Journal of Cognitive Neuroscience | 1993
Bernard Mazoyer; N. Tzourio; Victor Frak; A. Syrota; N. Murayama; O. Levrier; G. Salamon; Stanislas Dehaene; Laurent Cohen; Jacques Mehler
In this study, we compare regional cerebral blood flow (rCBF) while French monolingual subjects listen to continuous speech in an unknown language, to lists of French words, or to meaningful and distorted stories in French. Our results show that, in addition to regions devoted to single-word comprehension, processing of meaningful stories activates the left middle temporal gyrus, the left and right temporal poles, and a superior prefrontal area in the left frontal lobe. Among these regions, only the temporal poles remain activated whenever sentences with acceptable syntax and prosody are presented.
Current Opinion in Neurobiology | 1999
Marc Jeannerod; Victor Frak
Motor imagery corresponds to a subliminal activation of the motor system, a system that appears to be involved not only in producing movements, but also in imagining actions, recognising tools and learning by observation, as well as in understanding the behaviour of other people. Recent advances in the field include the use of techniques for mapping brain activity and probing cortical excitability, as well as observation of brain lesioned patients during imaging tasks; these advances provide new insights into the covert aspects of motor activity.
Neuropsychologia | 1996
Stanislas Dehaene; N. Tzourio; Victor Frak; Laurence Raynaud; Laurent Cohen; Jacques Mehler; Bernard Mazoyer
Positron emission tomography was used to examine the cerebral networks underlying number comparison and multiplication in eight normal volunteers. Cerebral blood flow was measured within anatomical regions of interest defined in each subject using magnetic resonance imaging. Three conditions were used: rest with eyes closed, mental multiplication of pairs of arabic digits and larger-smaller comparison of the same pairs. Both multiplication and comparison activated the left and right lateral occipital cortices, the left precentral gyrus, and the supplementary motor area. Beyond these common activations, multiplication activated also the left and right inferior parietal gyri, the left fusiform and lingual gyri, and the right cuneus. Relative to comparison, multiplication also yielded superior activity in the left lenticular nucleus and in Brodmanns area 8, and induced a hemispheric asymmetry in the activation of the precentral and inferior frontal gyri. Conversely, relative to multiplication, comparison yielded superior activity in the right superior temporal gyrus, the left and right middle temporal gyri, the right superior frontal gyrus, and the right inferior frontal gyrus. These results underline the role of bilateral inferior parietal regions in number processing and suggest that multiplication and comparison may rest on partially distinct networks.
Experimental Brain Research | 1997
Yves Paulignan; Victor Frak; Ivan Toni; Marc Jeannerod
Abstract Prehension movements of the right hand were recorded in normal subjects using a computerized motion analyzer. The kinematics and the spatial paths of markers placed at the wrist and at the tips of the index finger and thumb were measured. Cylindrical objects of different diameters (3, 6, 9 cm) were used as targets. They were placed at six different positions in the workspace along a circle centered on subject’s head axis. The positions were spaced by 10° starting from 10° on the left of the sagittal axis, up to 40° on the right. Both the transport and the grasp components of prehension were influenced by the distance between the resting hand position and the object position. Movement time, time to peak velocity of the wrist and time to maximum grip aperture varied as a function of distance from the object, irrespective of its size. The variability of the spatial paths of wrist and fingers sharply decreased during the phase of the movement prior to contact with the object. This indicates that the final position of the thumb and the index finger is a controlled parameter of visuomotor transformation during prehension. The orientation of the opposition axis (defined as the line connecting the tips of the thumb and the index finger at the end of the movement) was measured. Several different frames of reference were used. When an object-centered frame was used, the orientation of the opposition axis was found to change by about 10° from one object position to the next. By contrast, when a body-centered frame was used (with the head or the forearm as a reference), this orientation was found to remain relatively invariant for different object positions and sizes. The degree of wrist flexion was little affected by the position of the object. This result, together with the invariant orientation of the opposition axis, shows that prehension movements aimed at cylindrical objects are organized so as to minimize changes in posture of the lower arm.
PLOS ONE | 2012
Pia Aravena; Yvonne Delevoye-Turrell; Viviane Déprez; Anne Cheylus; Yves Paulignan; Victor Frak; Tatjana A. Nazir
Background Studies demonstrating the involvement of motor brain structures in language processing typically focus on time windows beyond the latencies of lexical-semantic access. Consequently, such studies remain inconclusive regarding whether motor brain structures are recruited directly in language processing or through post-linguistic conceptual imagery. In the present study, we introduce a grip-force sensor that allows online measurements of language-induced motor activity during sentence listening. We use this tool to investigate whether language-induced motor activity remains constant or is modulated in negative, as opposed to affirmative, linguistic contexts. Methodology/Principal Findings Participants listened to spoken action target words in either affirmative or negative sentences while holding a sensor in a precision grip. The participants were asked to count the sentences containing the name of a country to ensure attention. The grip force signal was recorded continuously. The action words elicited an automatic and significant enhancement of the grip force starting at approximately 300 ms after target word onset in affirmative sentences; however, no comparable grip force modulation was observed when these action words occurred in negative contexts. Conclusions/Significance Our findings demonstrate that this simple experimental paradigm can be used to study the online crosstalk between language and the motor systems in an ecological and economical manner. Our data further confirm that the motor brain structures that can be called upon during action word processing are not mandatorily involved; the crosstalk is asymmetrically governed by the linguistic context and not vice versa.
PLOS ONE | 2010
Victor Frak; Tatjana A. Nazir; Michel Goyette; Henri Cohen; Marc Jeannerod
Motor actions and action verbs activate similar cortical brain regions. A functional interference can be taken as evidence that there is a parallel treatment of these two types of information and would argue for the biological grounding of language in action. A novel approach examining the relationship between language and grip force is presented. With eyes closed and arm extended, subjects listened to words relating (verbs) or not relating (nouns) to a manual action while holding a cylinder with an integrated force sensor. There was a change in grip force when subjects heard verbs that related to manual action. Grip force increased from about 100 ms following the verb presentation, peaked at 380 ms and fell abruptly after 400 ms, signalling a possible inhibition of the motor simulation evoked by these words. These observations reveal the intimate relationship that exists between language and grasp and show that it is possible to elucidate online new aspects of sensorimotor interaction.
Frontiers in Human Neuroscience | 2014
Pia Aravena; Mélody Courson; Victor Frak; Anne Cheylus; Yves Paulignan; Viviane Déprez; Tatjana A. Nazir
Many neurocognitive studies on the role of motor structures in action-language processing have implicitly adopted a “dictionary-like” framework within which lexical meaning is constructed on the basis of an invariant set of semantic features. The debate has thus been centered on the question of whether motor activation is an integral part of the lexical semantics (embodied theories) or the result of a post-lexical construction of a situation model (disembodied theories). However, research in psycholinguistics show that lexical semantic processing and context-dependent meaning construction are narrowly integrated. An understanding of the role of motor structures in action-language processing might thus be better achieved by focusing on the linguistic contexts under which such structures are recruited. Here, we therefore analyzed online modulations of grip force while subjects listened to target words embedded in different linguistic contexts. When the target word was a hand action verb and when the sentence focused on that action (John signs the contract) an early increase of grip force was observed. No comparable increase was detected when the same word occurred in a context that shifted the focus toward the agents mental state (John wants to sign the contract). There mere presence of an action word is thus not sufficient to trigger motor activation. Moreover, when the linguistic context set up a strong expectation for a hand action, a grip force increase was observed even when the tested word was a pseudo-verb. The presence of a known action word is thus not required to trigger motor activation. Importantly, however, the same linguistic contexts that sufficed to trigger motor activation with pseudo-verbs failed to trigger motor activation when the target words were verbs with no motor action reference. Context is thus not by itself sufficient to supersede an “incompatible” word meaning. We argue that motor structure activation is part of a dynamic process that integrates the lexical meaning potential of a term and the context in the online construction of a situation model, which is a crucial process for fluent and efficient online language comprehension.
Brain and Cognition | 2006
Victor Frak; Yves Paulignan; Marc Jeannerod; François Michel; Henri Cohen
Prehension movements of the right hand were recorded in a right-handed man (AC), with an injury to the left posterior parietal cortex (PPC) and with a section of the left half of the splenium. The kinematic analysis of ACs grasping movements in direct and perturbed conditions was compared to that of five control subjects. A novel effect in prehension was revealed--a hemispace effect--in healthy controls only. Movements to the left hemispace were faster, longer, and with a smaller grasp aperture; perturbation of both object position and distance resulted in the attenuation of the direction effect on movement time and the time to velocity peak, with a reverse pattern in the time to maximum grip aperture. Nevertheless, the correlation between transport velocity amplitude and grasp aperture remained stable in both perturbed and non-perturbed movements, reflecting the coordination between reaching and grasping in control subjects. In contrast, transport and grasp, as well as their coordination in both direct and perturbed conditions, were negatively affected by the PPC and splenium lesion in AC, suggesting that transport and grasp rely on two functionally identifiable subsystems.
The Scientific World Journal | 2006
Victor Frak; Daniel Bourbonnais; I. Croteau; Henri Cohen; Clinique Sainte Anne
One the most fundamental aspects of the human motor system is the hemispheric asymmetry seen in behavioral specialization. Hemispheric dominance can be inferred by a contralateral hand preference in grasping. Few studies have considered grasp orientation in the context of manual lateralization and none has looked at grasp orientation with natural prehension. Thirty right-handed adults performed precision grasps of a cylinder using the thumb and index fingers, and the opposition axis (OA) was defined as the line connecting these two contact points on the cylinder. Subjects made ten consecutive grasps with one hand (primary hand movements) followed by ten grasps with the other hand (trailing movements). Differences between primary and trailing grasps revealed that each hemisphere is capable of programming the orientation of the OA and that primary movements with the right hand significantly influenced OA orientation of the trailing left hand. These results extend the hemispheric dominance of the left hemisphere to the final positions of fingers during prehension.
Behavior Research Methods | 2017
Tatjana A. Nazir; Lianna Hrycyk; Quentin Moreau; Victor Frak; Anne Cheylus; Laurent Ott; Oliver Lindemann; Martin H. Fischer; Yves Paulignan; Yvonne Delevoye-Turrell
Research in cognitive neuroscience has shown that brain structures serving perceptual, emotional, and motor processes are also recruited during the understanding of language when it refers to emotion, perception, and action. However, the exact linguistic and extralinguistic conditions under which such language-induced activity in modality-specific cortex is triggered are not yet well understood. The purpose of this study is to introduce a simple experimental technique that allows for the online measure of language-induced activity in motor structures of the brain. This technique consists in the use of a grip force sensor that captures subtle grip force variations while participants listen to words and sentences. Since grip force reflects activity in motor brain structures, the continuous monitoring of force fluctuations provides a fine-grained estimation of motor activity across time. In other terms, this method allows for both localization of the source of language-induced activity to motor brain structures and high temporal resolution of the recorded data. To facilitate comparison of the data to be collected with this tool, we present two experiments that describe in detail the technical setup, the nature of the recorded data, and the analyses (including justification about the data filtering and artifact rejection) that we applied. We also discuss how the tool could be used in other domains of behavioral research.