Víctor G. Martínez
Complutense University of Madrid
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Víctor G. Martínez.
Journal of Leukocyte Biology | 2008
Alberto Varas; Carmen Hernández-López; Jaris Valencia; Silvia Mattavelli; Víctor G. Martínez; Laura Hidalgo; Cruz Gutierrez-Frías; A. Zapata; Rosa Sacedón; Angeles Vicente
The Hedgehog (Hh) family of signaling molecules functions in the development of numerous tissues during embryogenesis and has also been involved in adult self‐renewing tissues. Recent results have demonstrated that the different components of the Hh signaling pathway are expressed in the human thymus. In this study, we investigate whether thymic dendritic cells (DCs) are cell targets for Hh signaling. Both components of the Hh receptor, Patched and Smoothened, as well as other Hh‐binding proteins with modulating functions, are expressed by human thymic DCs. The expression of Gli1, Gli2, and Gli3 transcription factors suggests that the Hh signaling pathway is active in thymic DCs, and approximately one‐half of thymic DCs produces Sonic Hh (Shh). The culture of thymic DCs with Shh protects them from apoptosis [similarly to CD40 ligand (CD40L)], and these antiapoptotic effects are related to an up‐regulation of Bcl‐2 and Bcl‐XL protein expression. The addition of the Hh pathway inhibitor, cyclopamine, decreases DC viability and impairs their allostimulatory function in vitro. In addition, the blockade of the Hh signaling pathway by cyclopamine treatment abrogates the up‐regulation of HLA‐DR, CD86, CD80, and CD83 expression induced by CD40L on thymic DCs. Finally, we also show that after activation with CD40L thymic DCs down‐regulate the expression of Hh receptor components as well as Shh production. Taken together, these results suggest that the survival and function of thymic DCs are regulated by an autocrine Hh signaling.
Immunology Letters | 2008
Carmen Hernández-López; Jaris Valencia; Laura Hidalgo; Víctor G. Martínez; A. Zapata; Rosa Sacedón; Alberto Varas; Angeles Vicente
CXCL12, a member of the chemokine CXC subfamily, and its physiologic receptor CXCR4 are essential for the development of various organs during embryonic development and are also involved in the control of cell survival, proliferation and migration in adult tissues. In the human thymus, CXCL12 is produced by epithelial cells located in the subcapsular and medullary regions and CXCR4 is expressed in different thymocyte subpopulations. Several results have demonstrated that CXCL12/CXCR4 signaling participates in different intrathymic processes including the control of human precursor cell survival and proliferation, and the exit of mature thymocytes to the periphery. In this study, we show that CXCL12 is also produced by human thymic dendritic cells (DCs), most of which express CXCR4 receptor. The addition of exogenous CXCL12 significantly inhibited the serum depletion-induced apoptosis in thymic DCs, and the treatment with neutralizing antibodies against CXCL12 or CXCR4 decreased their survival. The survival-promoting effect of CXCL12 was mediated by the up-regulation of Bcl-2 protein expression and the concomitant down-regulation of Bax protein expression. The higher viability of thymic DCs also enhanced their allostimulatory capacity. Taken together, the results suggest a new function of CXCL12 in the human thymus controlling the survival and functionality of thymic DCs.
Cancer Research | 2014
Mirentxu Santos; Mónica Martínez-Fernández; Marta Dueñas; Ramón García-Escudero; Begoña Alfaya; Felipe Villacampa; Cristina Saiz-Ladera; Clotilde Costa; Marta Oteo; José Duarte; Víctor G. Martínez; Ma José Gómez-Rodriguez; Mª Luisa Martín; Manoli Fernández; Patrick Viatour; Miguel Ángel Morcillo; Julien Sage; Daniel Castellano; José Luis Rodríguez-Peralto; Federico de la Rosa; Jesús M. Paramio
Bladder cancer is a highly prevalent human disease in which retinoblastoma (Rb) pathway inactivation and epigenetic alterations are common events. However, the connection between these two processes is still poorly understood. Here, we show that the in vivo inactivation of all Rb family genes in the mouse urothelium is sufficient to initiate bladder cancer development. The characterization of the mouse tumors revealed multiple molecular features of human bladder cancer, including the activation of E2F transcription factor and subsequent Ezh2 expression and the activation of several signaling pathways previously identified as highly relevant in urothelial tumors. These mice represent a genetically defined model for human high-grade superficial bladder cancer. Whole transcriptional characterizations of mouse and human bladder tumors revealed a significant overlap and confirmed the predominant role for Ezh2 in the downregulation of gene expression programs. Importantly, the increased tumor recurrence and progression in human patients with superficial bladder cancer is associated with increased E2F and Ezh2 expression and Ezh2-mediated gene expression repression. Collectively, our studies provide a genetically defined model for human high-grade superficial bladder cancer and demonstrate the existence of an Rb-E2F-Ezh2 axis in bladder whose disruption can promote tumor development.
Molecular Carcinogenesis | 2015
Marta Dueñas; Mónica Martínez-Fernández; Ramón García-Escudero; Felipe Villacampa; Miriam Marqués; Cristina Saiz-Ladera; José Duarte; Víctor G. Martínez; Mª José Gómez; Mª Luisa Martín; Manoli Fernández; Daniel Castellano; Francisco X. Real; José Luis Rodríguez-Peralto; Federico de la Rosa; Jesús M. Paramio
Bladder cancer (BC) is the fifth most common cancer in the world, being the non‐muscle invasive tumors (NMIBC) the most frequent. NMIBC shows a very high frequency of recurrence and, in certain cases, tumor progression. The phosphatidylinositol 3‐kinase (PI3K) pathway, which controls cell growth, tumorigenesis, cell invasion and drug response, is frequently activated in numerous human cancers, including BC, in part through alterations of PIK3CA gene. However, the significance of PIK3CA gene alterations with respect to clinicopathological characteristics, and in particular tumor recurrence and progression, remains elusive. Here, we analyzed the presence of mutations in FGFR3 and PIK3CA genes and copy number alterations of PIK3CA gene in bladder tumor and their correspondent paired normal samples from 87 patients. We observed an extremely high frequency of PIK3CA gene alterations (mutations, copy gains, or both) in tumor samples, affecting primarily T1 and T2 tumors. A significant number of normal tissues also showed mutations and copy gains, being coincident with those found in the corresponding tumor sample. In low‐grade tumors PIK3CA mutations associated with FGFR3 mutations. Alterations in PIK3CA gene resulted in increased Akt activity in tumors. Interestingly, the presence of PIK3CA gene alterations, and in particular gene mutations, is significantly associated with reduced recurrence of NMIBC patients. Importantly, the presence of FGFR3 mutations may influence the clinical outcome of patients bearing alterations in PIK3CA gene, and increased recurrence was associated to FGFR3 mutated, PIK3CA wt tumors. These findings may have high relevance in terms of using PI3K‐targeted therapies for BC treatment.
Immunology and Cell Biology | 2011
Víctor G. Martínez; Carmen Hernández-López; Jaris Valencia; Laura Hidalgo; Ana Entrena; A. Zapata; Angeles Vicente; Rosa Sacedón; Alberto Varas
Bone morphogenetic proteins (BMPs), members of the transforming growth factor‐β superfamily, are multifunctional polypeptides regulating a broad spectrum of functions in embryonic and adult tissues. Recent reports have demonstrated that BMPs regulate the survival, proliferation and differentiation of several cell types in the immune system. In this study, we investigate the effects of BMP signaling activation on the capacity of human dendritic cells (DCs) to stimulate immune responses. Human DCs express type I and type II BMP receptors (BMPRIA, BMPRIB, type IA activin receptor, BMPRII) and BMP signal transduction molecules (Smad1, 5, and 8, as well as Smad4). On BMP stimulation, Id1–3 (inhibitor of differentiation 1–3/DNA binding) mRNA expression is upregulated and this effect can be blocked with the inhibitor dorsomorphin, showing that the canonical BMP signal transduction pathway is functionally active in DCs. BMP signaling activation promotes the phenotypic maturation of human DCs by increasing the expression of co‐stimulatory molecules and also CD83, programmed cell death ligand 1 (PD‐L1) and PD‐L2, and stimulates cytokine secretion, mainly interleukin‐8 and tumor necrosis factor‐α. Accordingly, BMP‐treated DCs exhibit an enhanced T‐cell stimulatory capacity. BMP signaling also enhances the survival of human DCs increasing the Bcl‐2/Bax ratio. Finally, the expression of Runx transcription factors is increased in mature DCs, and the mRNA levels of Runx1–3 are upregulated in response to BMP stimulation, indicating that Runx transcription factor family may mediate the effects of BMP signaling in human DC maturation.
Cell Cycle | 2009
Alberto Varas; Rosa Sacedón; Laura Hidalgo; Víctor G. Martínez; Jaris Valencia; Teresa Cejalvo; A. Zapata; Carmen Hernández-López; Angeles Vicente
Bone morphogenetic proteins (BMPs) play a pivotal role during vertebrate embryogenesis and organogenesis, and have also been described to function in regulating cell fate and determination in self-renewing tissues in adults. Recent results have demonstrated that the different components of the BMP2/4 signaling pathway are expressed in the human thymus. In this study, we provide evidence that BMP4 and IL-7 interplay is important in the maintenance of the human thymic progenitor population. Intrathymic CD34+ cells express BMP receptors (BMPRIA, BMPRIB, ActRIA, BMPRII), signal transduction molecules (Smad1, 5, 8 and 4), and produce BMP4. Neutralization of endogenous BMP4 by treatment with the antagonist Noggin reduces thymic precursor cell survival, and the addition of exogenous BMP4 decreases their proliferation. The treatment of chimeric human-mouse fetal thymus organ cultures with BMP4 inhibits cell expansion, arrests thymocyte differentiation, and leads to the accumulation of human CD34+ precursor cells. This effect is mainly attributed to the ability of BMP4 to counteract the IL-7-induced proliferation and differentiation of CD34+ cells. BMP4 down-regulates in the precursor cell population the expression of CD127 and inhibits the IL-7-dependent STAT5 phosphorylation. In addition, BMP signaling is promoted by IL-7. Our results also demonstrate that in thymic progenitors BMPs act downstream of Sonic Hedgehog, previously described to function as a maintenance factor for human intrathymic CD34+ precursor cells.
Blood | 2012
Laura Hidalgo; Víctor G. Martínez; Jaris Valencia; Carmen Hernández-López; Miriam Vázquez; José R. Nuñez; A. Zapata; Rosa Sacedón; Alberto Varas; Angeles Vicente
The bone morphogenetic protein (BMP) signaling pathway regulates survival, proliferation, and differentiation of several cell types in multiple tissues, including the thymus. Previous reports have shown that BMP signaling negatively regulates T-cell development. Here, we study the subpopulation of early human intrathymic progenitors expressing the type IA BMP receptor (BMPRIA) and provide evidence that CD34(+)CD1a(-)BMPRIA(+) precursor cells mostly express surface cell markers and transcription factors typically associated with NK cell lineage. These CD34(+) cells mostly differentiate into functional CD56(+) natural killer (NK) cells when they are cocultured with thymic stromal cells in chimeric human-mouse fetal thymic organ cultures and also in the presence of SCF and IL-15. Moreover, autocrine BMP signaling can promote the differentiation of thymic NK cells by regulating the expression of key transcription factors required for NK cell lineage (eg, Id3 and Nfil3) as well as one of the components of IL-15 receptor, CD122. Subsequently, the resulting population of IL-15-responsive NK cell precursors can be expanded by IL-15, whose action is mediated by BMP signaling during the last steps of thymic NK cell differentiation. Our results strongly suggest that BMPRIA expression identifies human thymic NK cell precursors and that BMP signaling is relevant for NK cell differentiation in the human thymus.
Journal of Leukocyte Biology | 2010
Jaris Valencia; Carmen Hernández-López; Víctor G. Martínez; Laura Hidalgo; A. Zapata; Angeles Vicente; Alberto Varas; Rosa Sacedón
Increasing evidence includes Wnt proteins inside the group of master‐signaling pathways that govern immune and nonimmune differentiation systems, fundamental for normal development and homeostasis. Although their precise functions in bone marrow and thymus are still controversial, numerous studies have shown that Wnt signaling is able to control the proliferation of hematopoietic stem cells and thymic progenitors and might also affect their cell‐fate decisions and subsequent maturation. In the present work, we analyze the effect of transient stimulation of the canonical Wnt pathway in the differentiation potential of Lin–CD34+ CD1a– human thymic progenitors, a multipotent and heterogeneous cell population that has the capacity to develop into T cells, NK cells, monocytes, cDC, and pDC. Our results demonstrate that giving a boost to canonical Wnt signaling, triggered by transient exposure to Wnt3a or LiCl, the differentiation capacity of thymic progenitors changes, enhancing NK cell production. On the contrary, Wnt3a‐ or LiCl‐pretreated thymic progenitors generate a significantly lower number of myeloid lineage cells, monocytes, and cDC and exhibit a reduced capacity to differentiate into pDC lineage. As a possible mechanism for this effect, we show that Wnt3a‐ and LiCl‐pretreated progenitors change their membrane levels of receptors for cytokines pivotal for their expansion and differentiation, such as Flt3L. Moreover, canonical Wnt pathway stimulation modifies the transcription factor profile of CD34+CD1– thymocytes, increasing Hes‐1 and ID3 expression levels.
Arthritis Research & Therapy | 2015
Alberto Varas; Jaris Valencia; Fabien Lavocat; Víctor G. Martínez; Ndiémé Thiam; Laura Hidalgo; Lidia M. Fernández-Sevilla; Rosa Sacedón; Angeles Vicente; Pierre Miossec
IntroductionBone morphogenetic proteins (BMPs) are multifunctional secreted growth factors regulating a broad spectrum of functions in numerous systems. An increased expression and production of specific BMPs have been described in the rheumatoid arthritis (RA) synovium. The aim of this study was to analyze the involvement of the BMP signaling pathway in RA synoviocytes in response to interleukin-17 (IL-17) and tumor necrosis factor-alpha (TNF-α).MethodsThe expression of components of the BMP signaling pathway (BMP receptors, BMP ligands, BMP signal transducers, and BMP antagonists) was analyzed by quantitative polymerase chain reaction before and after treatment of RA synoviocytes with TNF-α or IL-17 or both. Regulation was studied in the presence of the specific BMP inhibitor DMH1 (dorsomorphin homologue 1) or an exogenous BMP ligand, BMP6. Expression and production of pro-inflammatory cytokines (IL-6 and granulocyte-macrophage colony-stimulating factor), chemokines (IL-8, CCL2, CCL5, and CXCL10), and matrix metalloproteinases (MMP-1, −2, −3, −9, and −13) were analyzed.ResultsRA synoviocytes express BMP receptors (mainly BMPRIA, ACTRIA, and BMPRII), signal transducers of the Smad family (Smad1 and 5 and co-Smad4), and different BMP antagonists. The modulation of the expression of the BMP target genes—Id (inhibitor of DNA-binding/differentiation) proteins and Runx (Runt-related transcription factor) transcription factors—after the addition of exogenous BMP shows that the BMP signaling pathway is active. RA synoviocytes also express BMP ligands (BMP2, BMP6, and BMP7) which are highly upregulated after activation with TNF-α and IL-17. Autocrine BMP signaling pathway can be blocked by treatment with the inhibitor DMH1, leading to an increase in the upregulated expression of pro-inflammatory cytokines, chemokines, and MMPs induced by the activation of RA synoviocytes with TNF-α and IL-17. Conversely, the additional stimulation of the BMP pathway with the exogenous addition of the BMP6 ligand decreases the expression of those pro-inflammatory and pro-destructive factors.ConclusionThe results indicate that the canonical BMP pathway is functionally active in human RA synoviocytes and that the inhibition of autocrine BMP signaling exacerbates the pro-inflammatory phenotype induced in RA synoviocytes by the stimulation with IL-17 and TNF-α.
Immunology Letters | 2014
Jaris Valencia; Víctor G. Martínez; Laura Hidalgo; Carmen Hernández-López; Noelia M. Canseco; Angeles Vicente; Alberto Varas; Rosa Sacedón
Wnt5a is a secreted pleiotropic glycoprotein produced in an inflammatory state by a wide spectrum of ubiquitous cell populations. Recently, we demonstrated that Wnt5a skews the differentiation of human monocyte derived dendritic cells (moDCs) to a tolerogenic functional state. In this study we focus our interest on the role of this Wnt ligand after DC differentiation, during their maturation and function. We show that the expression of Wnt receptors is tightly regulated during the life cycle of DCs suggesting a differential responsiveness to Wnt signaling conditioned by their differentiation stage and the maturational stimuli. Furthermore, we confirm that Wnt5a is the main non-canonical Wnt protein expressed by DCs and its production increases upon specific stimuli. Exogenous Wnt5a improved the endocytic capacity of immature DCs but it is not a stimulatory signal on its own, slightly affecting the maturation and function of DCs. However, knocking down Wnt5a gene expression in maturing DCs demonstrates that DC-derived Wnt5a is necessary for normal IL-12 secretion and plays a positive role during the development of Th1 responses. Wnt5a acts both in autocrine and paracrine ways. Thus, human naive CD4(+) T cells express Wnt receptors and, the addition of Wnt5a during CD3/CD28 stimulation enhances IL-2 and IFN-γ production. Taken together these results suggest a time-dependent role for Wnt5a during inflammatory responses conditioned by the differentiation stage of cellular targets.