Victor J. Lieffers
University of Alberta
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Victor J. Lieffers.
Ecological Applications | 1992
Edward H. Hogg; Victor J. Lieffers; Ross W. Wein
Global warming and the resultant increase in evapotranspiration might lead to lowered water tables in peatlands and an increase in fire frequency. The objective of this study was to investigate some of the potential effects of these changes on peat decomposition. Dry mass losses and emissions of CO2 and CH4 from peat samples taken from three depth layers (0-10, 10-20, and 30-40 cm) of a black spruce peatland were measured in the laboratory at 8°, 16°, and 24°C under two moisture treatments. Effects of deep peat fire on decomposition were also simulated by burning the upper layer (0-10 cm) of peat and adding the ash to peat samples from the 10-20 cm layer. CH4 release averaged <1% of total carbon loss in flooded samples. Release of CO2 was 4-9 times greater from the 0-10 cm layer than from the 30-40 cm layer. After 120 d, the 30-40 cm layer had lost <1% of its original dry mass in all treatments. Higher temperatures strongly promoted decomposition of samples exposed to drying cycles but had little effect on decomposition of continuously flooded samples. Ash addition had variable effects on CO2 emissions but may have promoted CH4 production. It is suggested that in certain situations, global warming may not cause appreciable increases in carbon loss from peat deposits. The results indicate that some deeper peats are resistant to decay even when exposed to warm, aerobic conditions. However, further experimental work is needed to predict the long-term response of peat deposits to changes in water levels in different peatland types.
Trees-structure and Function | 2003
Simon M. Landhäusser; Victor J. Lieffers
To assess the changes in seasonal carbohydrate status of Populus tremuloides, sugar and starch concentrations were monitored in roots, stem xylem and phloem and branches of ten different clones. Time of root growth was assessed by extraction of roots from in-growth cores collected five times during the season. Overall the results showed that the main period of root growth in these northern clones was shifted from spring to late summer and fall likely due to the microclimatic conditions of the soil. This increase in root growth was associated with a decline in total non-structural carbohydrate content in the roots during this period. This study also found that the carbohydrate reserves in these clones were being stored as close as possible to the organs of annual growth (leaves and roots). At the time of leaf flush, the largest reduction in stored carbohydrates (3% of dry weight) was observed in the branches of the trees, compared to a slight decline in the stem and roots. Starch and sugar reserves in most tissues were very low in early summer. This suggests that reserves that might be used for the regrowth of foliage after insect defoliation or other disturbances, are relatively small compared to the portion that is needed for maintenance and typical growth developments such as leaf flush.
Agricultural and Forest Meteorology | 2000
Kenneth J. Stadt; Victor J. Lieffers
We describe the calibration and structure of a multi-species, two-scale light transmission model, and demonstrate its effectiveness for predicting instantaneous light availability at the stand scale across a wide range of forest stand compositions. The model, MIXLIGHT, calculates light transmission through the forest overstory at the stand or microsite scale using standard forest inventory data and two other parameters, foliage area density and foliage inclination. Since MIXLIGHT simulations on both scales are based on a list of individual tree characteristics, it allows for simple manipulation of stand structure to study the effects of silvicultural options on light availability. The two scales allow the input of various kinds of data, allowing predictions from data of different sources and completeness. A simple and rapid method of calibrating the foliage parameters for the species of interest is presented, using measurements of direct-beam light transmission measurements made in the shadows of newly isolated trees. In an independent validation, MIXLIGHT predicted light transmission at the stand level closely for 17 forest inventory plots with a wide range of density and species composition, during leaf-on and leaf-off seasons and under sunny and cloudy conditions. A sensitivity analysis indicated that the influence of the parameters in the model on stand level light transmission predictions was (highest to lowest): foliage area density, crown radius, crown length, and foliage inclination. Nonetheless, a test of the common assumption that the foliage is spherically inclined caused significant underestimation of light transmission. With this flexibility and demonstrated accuracy, we believe MIXLIGHT will provide an accessible and effective tool for forest stand management and regeneration modeling.
Annals of Forest Science | 2007
Kenneth J. Stadt; Carolyn Huston; K. David Coates; Zhili Feng; Mark R. T. Dale; Victor J. Lieffers
A series of conventional distance-independent and distance-dependent competition indices, a highly flexible distance-dependent crowding index, and two light resource estimation indices were compared to predict individual tree diameter growth of five species of mature trees from natural-origin boreal mixed forests. The crowding index was the superior index for most species and ecosites. However, distance-independent indices, such as basal area of competing trees, were also effective. Distance-dependent light estimation indices, which estimate the fraction of seasonal photosynthetically-active radiation available to each tree, ranked intermediate to low. Determining separate competition indices for each competitor species accounted for more variation than ignoring species or classifying by ecological groups. Species’ competitive ability ranked (most competitive to least): paper birch ≈ white spruce ≈> trembling aspen > lodgepole pine > balsam poplar. Stratification by ecosite further improved model performance. However, the overall impact of competition on mature trees in these forests appears to be small.RésuméCe travail a évalué la capacité d’indices de compétition à prédire la croissance radiale individuelle d’arbres adultes de cinq espèces de forêts mixtes boréales. Ont ainsi été comparés : (1) une série d’indices conventionnels de compétition indépendants ou dépendants de la distance, (2) un indice très flexible d’encombrement dépendant de la distance et (3) deux indices d’estimation de l’éclairement. L’indice d’encombrement a été le plus efficace dans la plupart des stations et des espèces. Cependant, les indices indépendants de la distance tels que la surface terrière des arbres en compétition, ont été également efficaces. Les indices dépendants de la distance, d’estimation de l’éclairement, qui estiment la fraction saisonnière du rayonnement photosynthétiquement actif disponible pour chaque arbre, se sont classés en position intermédiaire. L’identification d’indices de compétition spécifiques de chaque espèce compétitrice a mieux rendu compte de la diversité des stations qu’un indice non spécifique ou qu’un classement des espèces par groupes écologiques. L’aptitude à la compétition des espèces a été classée de la manière suivante (de la plus à la moins compétitive) : Betula papyrifera, Picea glauca, Populus tremuloides, Pinus contorta, Populus balsamifera. La stratification par station améliore encore la performance du modèle. Cependant, l’impact général de la compétition sur les arbres adultes dans ces forêts semble être faible.
Journal of Vegetation Science | 2001
Annie DesRochers; Victor J. Lieffers
The coarse-root dynamics of ramets of Populus tremuloides (aspen) were investigated with respect to persist- ence of the original root connections (roots of parent trees from which the ramets originated), the time of establishment of new roots at the base of the stem and the fate of the communal root system after death of individual trees. Parts of the root systems of three declining stands of aspen ramets were hydraulically excavated. From each stand, sections of all structural roots were collected at the base of live and dead trees and were analysed using dendrochronology techniques. Par- ent roots were identified in the root system of every tree. The trees initiated new structural roots shortly after suckering. Live roots were often connected to the stump of dead and decayed trees. Grafting was common, especially at or near the stumps. Death of trees along the parent roots over time did not seem to favour the entry of significant decay, nor promote breakage of the original root connections. Instead of becom- ing independent of the parent root system the ramets incorpo- rated the parent roots into their own root systems, remaining interconnected.
Journal of Ecology | 1993
S. Ellen Macdonald; Victor J. Lieffers
1) A glasshouse experiment was conducted in which individuals of the rhizomatous grass Calamagrostis canadensis were grown in soil-filled wooden boxes. Directly adjacent to each plant on one side was a control area (same conditions as those in which the plant was growing), while immediately adjacent on the other side was an area with one of the experimental conditions («shade», «cool soil», «cool soil + shade», or «cool soil + intraspecific competition»). Rhizomes of each plant were allowed the opportunity to grow simultaneously into both the control and the treated side
Plant Cell and Environment | 2010
Amanda Schoonmaker; Uwe G. Hacke; Simon M. Landhäusser; Victor J. Lieffers; Melvin T. Tyree
The purpose of this study was to determine how shading affects the hydraulic and wood-anatomical characteristics of four boreal conifers (Pinus banksiana, Pinus contorta, Picea glauca and Picea mariana) that differ in shade tolerance. Plants were grown in an open field and under a deciduous-dominated overstory for 6 years. Sapwood- and leaf-area specific conductivity, vulnerability curves, and anatomical measurements (light and scanning electron microscopy) were made on leading shoots from six to nine trees of each treatment combination. There was no difference in sapwood-area specific conductivity between open-grown and understory conifers, although two of four species had larger tracheid diameters in the open. Shaded conifers appeared to compensate for small diameter tracheids by changes in pit membrane structure. Scanning electron microscopy revealed that understory conifers had thinner margo strands, greater maximum pore size in the margo, and more torus extensions. All of these trends may contribute to inadequate sealing of the torus. This is supported by the fact that all species showed increased vulnerability to cavitation when grown in the understory. Although evaporative demand in an understory environment is low, a rapid change into fully exposed conditions could be detrimental for shaded conifers.
Scandinavian Journal of Forest Research | 2003
Simon M. Landhäusser; Uldis Silins; Victor J. Lieffers; Wei Liu
Populus balsamifera L., Betula papyrifera Marsh., Populus tremuloides Michx. and Picea glauca (Moench) Voss seedlings were grown in specialized pots that maintained a constant water-table height and allowed monitoring of water use by the tree/pot under high water-table conditions and different soil temperatures. The trees were grown at imperfectly and poorly drained water table conditions and at 5, 10 or 20°C soil temperature. In P. balsamifera, net assimilation and transpiration remained high under wet soil conditions and increased with higher soil temperatures. Populus balsamifera growth and leaf area development were severely restricted at soil temperatures of 5°C. Both B. papyrifera and P. tremuloides had low transpiration and pot level water-use rates at both water-table conditions and these did not significantly increase with increasing soil temperature. Picea glauca was negatively affected by high water tables but showed minimal response to soil temperature changes. The study suggests that P. balsamifera would be a good hydrological nurse crop to lower the water table when soils are warm, while B. papyrifera is likely to be a good nurse species in cool and imperfectly drained sites.
Oecologia | 1992
Ken J. Greenway; S. Ellen Macdonald; Victor J. Lieffers
SummaryThis study evaluated the contribution of different ages of foliage to the nutrient and carbon balance of black spruce (Picea mariana (Mill.) B.S.P.) from a nutrient-poor peatland in Alberta. Seasonal patterns of foliar nitrogen and phosphorus concentration and content were examined in six needle cohorts up to 10 years old. Trees were treated to simulate excess nutrient deficiency (removal of all one-year-old foliage), nutrient excess (fertilized with 250, 50, 100 kg ha−1 NPK split application in June and July), or left as controls. Gas exchange (net assimilation-Na, stomatal conductance-gs, mesophyll conductance-gm, water-use efficiency-WUE, dark respiration-RS) was measured on six different needle cohorts in several control trees in 1989 and 1990. Nitrogen and phosphorus concentration decreased with needle age. Foliar nutrient concentration fell from April to June and then was stable until September except for the fertilized trees where it increased. There was no evidence of greater than normal retranslocation of nutrients from older needles for defoliated trees or greater than normal nutrient loading in older needles of fertilized trees. NA, gs, gm, WUE, and RS were similar for all needles up to six or eight years old, these older needles having NA of 65% of current needles and similar RS. The results do not support to conclusion that older needles of black spruce are retained as an adaptation to nutrient stress. It does not appear that older needles serve as a nutrient storage site in conditions of excess nutrient availability or a greater than normal nutrient source during times of excess nutrient deficiency. It appears that the maintenance of long-livedfoliage in black spruce does not provide for greater flexibility in tree nutrient allocation. Their contribution to the carbon balance of the tree seems to be sufficient to explain their retention.
New Phytologist | 2013
Devin W. Goodsman; Inka Lusebrink; Simon M. Landhäusser; Nadir Erbilgin; Victor J. Lieffers
If carbon (C) sinks withdraw carbohydrates as they are transported along tree stems, carbohydrate availability may depend on local sink strength and distance from sources. Defenses, including monoterpenes--a major component of resin--limit the invasibility of pines. Since carbohydrate reserves fund monoterpene synthesis, we hypothesized that monoterpene concentrations in pine stems would decrease from the crown to the lower stem, and susceptibility to fungal infection would increase. Here, we measured carbohydrate and monoterpene concentrations along the stems of lodgepole pine trees (Pinus contorta var. latifolia) before inoculating with a blue-stain fungus at different heights. After 6 wk, we assessed tree responses to fungal infection based on lesion length and carbohydrate mobilization. Concentrations of carbohydrates and monoterpenes in the phloem before inoculation decreased with distance from the crown, whereas lesion lengths after inoculation increased. However, trees mobilized sugars in response to fungal infection such that carbohydrate reserves near lesions were similar at all heights. Despite C mobilization, the lower stem was more vulnerable than the upper stem. Consistent with predictions based on sink-source relationships, vulnerability occurred where carbohydrates were less available, and likely resulted from C withdrawal by sinks higher in the supply chain.