Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Victor M. Bolanos-Garcia is active.

Publication


Featured researches published by Victor M. Bolanos-Garcia.


Current Biology | 2011

CENP-C Is a Structural Platform for Kinetochore Assembly

Marcin R. Przewloka; Zsolt Venkei; Victor M. Bolanos-Garcia; Janusz Dębski; Michal Dadlez; David M. Glover

Centromeres provide a region of chromatin upon which kinetochores are assembled in mitosis. Centromeric protein C (CENP-C) is a core component of this centromeric chromatin that, when depleted, prevents the proper formation of both centromeres and kinetochores. CENP-C localizes to centromeres throughout the cell cycle via its C-terminal part, whereas its N-terminal part appears necessary for recruitment of some but not all components of the Mis12 complex of the kinetochore. We now find that all kinetochore proteins belonging to the KMN (KNL1/Spc105, the Mis12 complex, and the Ndc80 complex) network bind to the N-terminal part of Drosophila CENP-C. Moreover, we show that the Mis12 complex component Nnf1 interacts directly with CENP-C in vitro. To test whether CENP-Cs N-terminal part was sufficient to recruit KMN proteins, we targeted it to the centrosome by fusing it to a domain of Plk4 kinase. The Mis12 and Ndc80 complexes and Spc105 protein were then all recruited to centrosomes at the expense of centromeres, leading to mitotic abnormalities typical of cells with defective kinetochores. Thus, the N-terminal part of Drosophila CENP-C is sufficient to recruit core kinetochore components and acts as the principal linkage between centromere and kinetochore during mitosis.


The EMBO Journal | 2008

Crystal structure of human XLF/Cernunnos reveals unexpected differences from XRCC4 with implications for NHEJ

Yi Li; Dimitri Y. Chirgadze; Victor M. Bolanos-Garcia; Bancinyane L. Sibanda; Owen R. Davies; Peter Ahnesorg; Tom L. Blundell

The recently characterised 299‐residue human XLF/Cernunnos protein plays a crucial role in DNA repair by non‐homologous end joining (NHEJ) and interacts with the XRCC4–DNA Ligase IV complex. Here, we report the crystal structure of the XLF (1–233) homodimer at 2.3 Å resolution, confirming the predicted structural similarity to XRCC4. The XLF coiled‐coil, however, is shorter than that of XRCC4 and undergoes an unexpected reverse in direction giving rise to a short distorted four helical bundle and a C‐terminal helical structure wedged between the coiled‐coil and head domain. The existence of a dimer as the major species is confirmed by size‐exclusion chromatography, analytical ultracentrifugation, small‐angle X‐ray scattering and other biophysical methods. We show that the XLF structure is not easily compatible with a proposed XRCC4:XLF heterodimer. However, we demonstrate interactions between dimers of XLF and XRCC4 by surface plasmon resonance and analyse these in terms of surface properties, amino‐acid conservation and mutations in immunodeficient patients. Our data are most consistent with head‐to‐head interactions in a 2:2:1 XRCC4:XLF:Ligase IV complex.


Trends in Biochemical Sciences | 2011

BUB1 and BUBR1: multifaceted kinases of the cell cycle

Victor M. Bolanos-Garcia; Tom L. Blundell

The multidomain protein kinases BUB1 and BUBR1 (Mad3 in yeast, worms and plants) are central components of the mitotic checkpoint for spindle assembly (SAC). This evolutionarily conserved and essential self-monitoring system of the eukaryotic cell cycle ensures the high fidelity of chromosome segregation by delaying the onset of anaphase until all chromosomes are properly bi-oriented on the mitotic spindle. Despite their amino acid sequence conservation and similar domain organization, BUB1 and BUBR1 perform different functions in the SAC. Recent structural information provides crucial molecular insights into the regulation and recognition of BUB1 and BUBR1, and a solid foundation to dissect the roles of these proteins in the control of chromosome segregation in normal and oncogenic cells.


Structure | 2011

Structure of a Blinkin-BUBR1 Complex Reveals an Interaction Crucial for Kinetochore-Mitotic Checkpoint Regulation via an Unanticipated Binding Site

Victor M. Bolanos-Garcia; Tiziana Lischetti; Dijana Matak-Vinkovic; Ernesto Cota; Peter J. Simpson; Dimitri Y. Chirgadze; David R. Spring; Carol V. Robinson; Jakob Nilsson; Tom L. Blundell

Summary The maintenance of genomic stability relies on the spindle assembly checkpoint (SAC), which ensures accurate chromosome segregation by delaying the onset of anaphase until all chromosomes are properly bioriented and attached to the mitotic spindle. BUB1 and BUBR1 kinases are central for this process and by interacting with Blinkin, link the SAC with the kinetochore, the macromolecular assembly that connects microtubules with centromeric DNA. Here, we identify the Blinkin motif critical for interaction with BUBR1, define the stoichiometry and affinity of the interaction, and present a 2.2 Å resolution crystal structure of the complex. The structure defines an unanticipated BUBR1 region responsible for the interaction and reveals a novel Blinkin motif that undergoes a disorder-to-order transition upon ligand binding. We also show that substitution of several BUBR1 residues engaged in binding Blinkin leads to defects in the SAC, thus providing the first molecular details of the recognition mechanism underlying kinetochore-SAC signaling.


Progress in Biophysics & Molecular Biology | 2003

On the structure and function of apolipoproteins: more than a family of lipid-binding proteins

Victor M. Bolanos-Garcia; Ricardo Núñez Miguel

Exchangeable apolipoproteins have been the subject of intense biomedical investigation for decades. However, only in recent years the elucidation of the three-dimensional structure reported for several members of the apolipoprotein family has provided insights into their functions at a molecular level for the first time. Moreover, the role of exchangeable apolipoproteins in several cellular events distinct from lipid metabolism has recently been described. This review summarizes these contributions, which have not only allowed the identification of the apolipoprotein domains that determine substrate binding specificity and/or affinity but also the plausible molecular mechanism(s) involved.


ChemBioChem | 2006

Evidence that a Novel Thioesterase is Responsible for Polyketide Chain Release during Biosynthesis of the Polyether Ionophore Monensin

Barbara M. Harvey; Hui Hong; Michelle A. Jones; Zoë A. Hughes‐Thomas; Rebecca M. Goss; Michelle L. Heathcote; Victor M. Bolanos-Garcia; Wolfgang Kroutil; James Staunton; Peter F. Leadlay; Jonathan B. Spencer

Polyether ionophores, such as monensin A, are known to be biosynthesised, like many other antibiotic polyketides, on giant modular polyketide synthases (PKSs), but the intermediates and enzymes involved in the subsequent steps of oxidative cyclisation remain undefined. In particular there has been no agreement on the mechanism and timing of the final polyketide chain release. We now report evidence that MonCII from the monensin biosynthetic gene cluster in Streptomyces cinnamonensis, which was previously thought to be an epoxide hydrolase, is a novel thioesterase that belongs to the α/β‐hydrolase structural family and might catalyse this step. Purified recombinant MonCII was found to hydrolyse several thioester substrates, including an N‐acetylcysteamine thioester derivative of monensin A. Further, incubation with a hallmark inhibitor of such enzymes, phenylmethanesulfonyl fluoride, led to inhibition of the thioesterase activity and to the accumulation of an acylated form of MonCII. These findings require a reassessment of the role of other enzymes implicated in the late stages of polyether ionophore biosynthesis.


Journal of Cellular Biochemistry | 2004

Cell cycle regulatory protein p27KIP1 is a substrate and interacts with the protein kinase CK2.

Julio C. Tapia; Victor M. Bolanos-Garcia; Muhammed Sayed; Catherine C. Allende; Jorge E. Allende

The protein kinase CK2 is constituted by two catalytic (α and/or α′) and two regulatory (β) subunits. CK2 phosphorylates more than 300 proteins with important functions in the cell cycle. This study has looked at the relation between CK2 and p27KIP1, which is a regulator of the cell cycle and a known inhibitor of cyclin‐dependent kinases (Cdk). We demonstrated that in vitro recombinant Xenopus laevis CK2 can phosphorylate recombinant human p27KIP1, but this phosphorylation occurs only in the presence of the regulatory β subunit. The principal site of phosphorylation is serine‐83. Analysis using pull down and surface plasmon resonance (SPR) techniques showed that p27KIP1 interacts with the β subunit through two domains present in the amino and carboxyl ends, while CD spectra showed that p27KIP1 phosphorylation by CK2 affects its secondary structure. Altogether, these results suggest that p27KIP1 phosphorylation by CK2 probably involves a docking event mediated by the CK2β subunit. The phosphorylation of p27KIP1 by CK2 may affect its biological activity.


Molecular and Cellular Biochemistry | 2005

MET meet adaptors: functional and structural implications in downstream signalling mediated by the Met receptor.

Victor M. Bolanos-Garcia

The Na+/H+ exchanger is a ubiquitous protein that transports Na+ and H+ in opposite directions across cell membranes. In fission yeast, the Na+/H+ exchanger sod2 plays a major role in the removal of excess detrimental intracellular sodium. The effect of mutagenesis of conserved polar amino acids of sod2 was examined by expressing 10 different mutant forms of sod2 in sod2 deficient S. pombe and characterizing salt tolerance. Asp145, 266, 267, and Glu173 were critical for proper function of sod2. Asp241 had an intermediate effect on sod2 function while mutation of Asp178 did not impair sod2 function. Simultaneous mutation of the Asp266, 267 pair impaired sod2 function. Mutation of each individual residue demonstrated that both were critical for sod2 function. Conservative mutations (Asp to Glu) of Asp266 and 267 failed to restore sod2 function. The results suggest that acidic residues associated with transmembrane segments are important in function, possibly being important in binding and coordinating cations. (Mol Cell Biochem 268: 83–92, 2005)


PLOS ONE | 2010

Cell-Cycle Inhibition by Helicobacter pylori L-Asparaginase

Claudia Scotti; Patrizia Sommi; Maria Valentina Pasquetto; Donata Cappelletti; Simona Stivala; Paola Mignosi; Monica Savio; Laurent R. Chiarelli; Giovanna Valentini; Victor M. Bolanos-Garcia; Douglas Scott Merrell; Silvia Franchini; Maria Luisa Verona; Cristina Bolis; Enrico Solcia; Rachele Manca; Diego Franciotta; Andrea Casasco; Paola Filipazzi; Elisabetta Zardini; Vanio Vannini

Helicobacter pylori (H. pylori) is a major human pathogen causing chronic gastritis, peptic ulcer, gastric cancer, and mucosa-associated lymphoid tissue lymphoma. One of the mechanisms whereby it induces damage depends on its interference with proliferation of host tissues. We here describe the discovery of a novel bacterial factor able to inhibit the cell-cycle of exposed cells, both of gastric and non-gastric origin. An integrated approach was adopted to isolate and characterise the molecule from the bacterial culture filtrate produced in a protein-free medium: size-exclusion chromatography, non-reducing gel electrophoresis, mass spectrometry, mutant analysis, recombinant protein expression and enzymatic assays. L-asparaginase was identified as the factor responsible for cell-cycle inhibition of fibroblasts and gastric cell lines. Its effect on cell-cycle was confirmed by inhibitors, a knockout strain and the action of recombinant L-asparaginase on cell lines. Interference with cell-cycle in vitro depended on cell genotype and was related to the expression levels of the concurrent enzyme asparagine synthetase. Bacterial subcellular distribution of L-asparaginase was also analysed along with its immunogenicity. H. pylori L-asparaginase is a novel antigen that functions as a cell-cycle inhibitor of fibroblasts and gastric cell lines. We give evidence supporting a role in the pathogenesis of H. pylori-related diseases and discuss its potential diagnostic application.


Structure | 2009

The Crystal Structure of the N-Terminal Region of BUB1 Provides Insight into the Mechanism of BUB1 Recruitment to Kinetochores

Victor M. Bolanos-Garcia; Tomomi Kiyomitsu; Sheena D'Arcy; Dimitri Y. Chirgadze; J. Günter Grossmann; Dijana Matak-Vinkovic; Ashok R. Venkitaraman; Mitsuhiro Yanagida; Carol V. Robinson; Tom L. Blundell

Summary The interaction of the central mitotic checkpoint component BUB1 with the mitotic kinetochore protein Blinkin is required for the kinetochore localization and function of BUB1 in the mitotic spindle assembly checkpoint, the regulatory mechanism of the cell cycle that ensures the even distribution of chromosomes during the transition from metaphase to anaphase. Here, we report the 1.74 Å resolution crystal structure of the N-terminal region of BUB1. The structure is organized as a tandem arrangement of three divergent units of the tetratricopeptide motif. Functional assays in vivo of native and site-specific mutants identify the residues of human BUB1 important for the interaction with Blinkin and define one region of potential therapeutic interest. The structure provides insight into the molecular basis of Blinkin-specific recognition by BUB1 and, on a broader perspective, of the mechanism that mediates kinetochore localization of BUB1 in checkpoint-activated cells.

Collaboration


Dive into the Victor M. Bolanos-Garcia's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Takashi Ochi

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qian Wu

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar

Manuel Soriano-García

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Véronique Vié

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge