Víctor Martín-Lozano
University of Bonn
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Víctor Martín-Lozano.
Journal of High Energy Physics | 2016
Luis E. Ibanez; Víctor Martín-Lozano
A bstractLow scale string models naturally have axion-like pseudoscalars which couple directly to gluons and photons (but not W ’s) at tree level. We show how they typically get tree level masses in the presence of closed string fluxes , consistent with the axion discrete gauge symmetry, in a way akin of the axion monodromy of string inflation and relaxion models. We discuss the possibility that the hints for a resonance at 750 GeV recently reported at ATLAS and CMS could correspond to such a heavy axion state (megaxion). Adjusting the production rate and branching ratios suggest the string scale to be of order Ms ≃ 7-104 TeV, depending on the compactification geometry. If this interpretation was correct, one extra Z’ gauge boson could be produced before reaching the string threshold at LHC and future colliders.
Journal of High Energy Physics | 2014
D. G. Cerdeno; Víctor Martín-Lozano; Osamu Seto
A bstractWe study LHC signatures of displaced vertices and long-lived charged particles within the context of the Next-to-Minimal Supersymmetric Standard Model with right-handed (RH) sneutrinos. In this construction the RH neutrino can be produced directly from Higgs decays or in association with a RH sneutrino when the latter is the lightest supersymmetric particle. The RH neutrino is generally long-lived, since its decay width is proportional to the neutrino Yukawa, a parameter which is predicted to be small. The RH neutrino late decay can therefore give rise to displaced vertices at the LHC, which can be identified through the decay products, which involve two leptons (2ℓ + T ) or a lepton with two jets (ℓjj). We simulate this signal for the current LHC configuration (a centre of mass of 8 TeV and an integrated luminosity of
Journal of High Energy Physics | 2016
Chiara Arina; Mikael Chala; Víctor Martín-Lozano; Germano Nardini
\mathcal{L}
European Physical Journal C | 2016
Valentina De Romeri; Jong Soo Kim; Víctor Martín-Lozano; Krzysztof Rolbiecki; Roberto Ruiz de Austri
= 20 fb−1), and a future one (13 TeV and
Journal of High Energy Physics | 2017
Luis E. Ibanez; Víctor Martín-Lozano; Irene Valenzuela
\mathcal{L}
Journal of High Energy Physics | 2014
Chiara Arina; Germano Nardini; Víctor Martín-Lozano
= 100 fb−1). We show that a region of the parameter space of this model can be probed and that the RH neutrino mass can be reconstructed from the end-point of the two-lepton invariant mass distribution or the central value of the mass distribution for two jets plus one lepton. Another exotic signature of this construction is the production of a long-lived stau. If the stau is the next-to-lightest supersymmetric particle, it can decay through diagrams involving the small neutrino Yukawa, and would escape the detector leaving a characteristic trail. We also simulate this signal for various benchmark points and show that the model can be within the reach of the future run of the LHC.
Journal of High Energy Physics | 2014
Chiara Arina; Víctor Martín-Lozano; Germano Nardini
A bstractWe investigate multi-lepton signals produced by ElectroWeakino (EWino) decays in the MSSM and the TMSSM scenarios with sfermions, gluinos and non Standard Model Higgses at the TeV scale, with dark matter due to electroweak-scale Binos. We recast the present LHC constraints on EWinos for these models and we find that wide MSSM and TMSSM parameter regions prove to be allowed. We forecast the number of events expected in the signal regions of the experimental multi-lepton analyses in the next LHC runs. The correlations among these numbers will help to determine whether future deviations in multi-lepton data are ascribable to the EWinos, as well as the supersymmetric model they originate from.
European Physical Journal C | 2018
D. G. Cerdeno; Valentina De Romeri; Víctor Martín-Lozano; Keith A. Olive; Osamu Seto
A diphoton excess with an invariant mass of about 750 GeV has been recently reported by both ATLAS and CMS experiments at LHC. While the simplest interpretation requires the resonant production of a 750 GeV (pseudo)scalar, here we consider an alternative setup, with an additional heavy parent particle which decays into a pair of 750 GeV resonances. This configuration improves the agreement between the 8 and 13 TeV data. Moreover, we include a dark matter candidate in the form of a Majorana fermion which interacts through the 750 GeV portal. The invisible decays of the light resonance help to suppress additional decay channels into Standard Model particles in association with the diphoton signal. We realise our hierarchical framework in the context of an effective theory, and we analyse the diphoton signal as well as the consistency with other LHC searches. We finally address the interplay of the LHC results with the dark matter phenomenology, namely the compatibility with the relic density abundance and the indirect detection bounds.
Journal of High Energy Physics | 2018
Víctor Martín-Lozano; Santiago Oviedo-Casado
A bstractIt is known that there are AdS vacua obtained from compactifying the SM to 2 or 3 dimensions. The existence of such vacua depends on the value of neutrino masses through the Casimir effect. Using the Weak Gravity Conjecture, it has been recently argued by Ooguri and Vafa that such vacua are incompatible with the SM embedding into a consistent theory of quantum gravity. We study the limits obtained for both the cosmological constant Λ4 and neutrino masses from the absence of such dangerous 3D and 2D SM AdS vacua. One interesting implication is that Λ4 is bounded to be larger than a scale of order mν4, as observed experimentally. Interestingly, this is the first argument implying a non-vanishing Λ4 only on the basis of particle physics, with no cosmological input. Conversely, the observed Λ4 implies strong constraints on neutrino masses in the SM and also for some BSM extensions including extra Weyl or Dirac spinors, gravitinos and axions. The upper bounds obtained for neutrino masses imply (for fixed neutrino Yukawa and Λ4) the existence of upper bounds on the EW scale. In the case of massive Majorana neutrinos with a see-saw mechanism associated to a large scale M ≃ 1010 − 14 GeV and Yν1 ≃ 10−3, one obtains that the EW scale cannot exceed MEW ≲ 102 − 104 GeV. From this point of view, the delicate fine-tuning required to get a small EW scale would be a mirage, since parameters yielding higher EW scales would be in the swampland and would not count as possible consistent theories. This would bring a new perspective into the issue of the EW hierarchy.
Journal of High Energy Physics | 2018
E. Arganda; Víctor Martín-Lozano; Anibal D. Medina; Nicolas Mileo
A bstractThe Triplet extension of the MSSM (TMSSM) alleviates the little hierarchy problem and provides a significant enhancement of the loop-induced diphoton rate of the lightest CP-even Higgs h. In this paper we pursue the analysis of the TMSSM Higgs phenomenology by computing for the first time the h → Zγ decay. Interestingly we find that the rates of loop-induced decays are correlated and their signal strengths can rise up to 40%-60% depending on the channel. We furthermore study the dark matter phenomenology of the TMSSM. The lightest neutralino is a good dark matter candidate in two regions. The first one is related to the Higgs and Z resonances and the LSP is mostly Bino. The second one is achieved for a mass larger than 90 GeV and the LSP behaves as the well-tempered neutralino. An advantage of the triplet contribution is that the well-tempered neutralino can be a Bino-Triplino mixture, relieving the problem of achieving M2 ~ M1 in unified scenarios. The dark matter constraints strongly affect the Higgs phenomenology, reducing the potential enhancements of the diphoton and of the Zγ channels by 20% at most. In the near future, dark matter direct searches and collider experiments will probe most of the parameter space where the neutralino is the dark matter candidate.