Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Victor Pikov is active.

Publication


Featured researches published by Victor Pikov.


Nature Reviews Drug Discovery | 2014

Bioelectronic medicines: a research roadmap

Karen Birmingham; Viviana Gradinaru; Polina Anikeeva; Warren M. Grill; Victor Pikov; Bryan McLaughlin; Pankaj Pasricha; Douglas Weber; Kip Ludwig; Kristoffer Famm

Realizing the vision of a new class of medicines based on modulating the electrical signalling patterns of the peripheral nervous system needs a firm research foundation. Here, an interdisciplinary community puts forward a research roadmap for the next 5 years.


Journal of Neural Engineering | 2013

3D Parylene sheath neural probe for chronic recordings

Brian J. Kim; Jonathan T. W. Kuo; Seth A. Hara; Curtis Lee; Lawrence Yu; Christian A. Gutierrez; Tuan Hoang; Victor Pikov; Ellis Meng

OBJECTIVE Reliable chronic recordings from implanted neural probes remain a significant challenge; current silicon-based and microwire technologies experience a wide range of biotic and abiotic failure modes contributing to loss of signal quality. APPROACH A multi-prong alternative strategy with potential to overcome these hurdles is introduced that combines a novel three dimensional (3D), polymer-based probe structure with coatings. Specifically, the Parylene C sheath-based neural probe is coated with neurotrophic and anti-inflammatory factors loaded onto a Matrigel carrier to encourage the ingrowth of neuronal processes for improved recording quality, reduce the immune response, and promote improved probe integration into brain tissue for reliable, long-term implementation compared to its rigid counterparts. MAIN RESULTS The 3D sheath structure of the probe was formed by thermal molding of a surface micromachined Parylene C microchannel, with electrode sites lining the interior and exterior regions of the lumen. Electrochemical characterization of the probes via cyclic voltammetry and electrochemical impedance spectroscopy was performed and indicated suitable electrode properties for neural recordings (1 kHz electrical impedance of ∼200 kΩ in vitro). A novel introducer tool for the insertion of the compliant polymer probe into neural tissue was developed and validated both in vitro using agarose gel and in vivo in the rat cerebral cortex. In vivo electrical functionality of the Parylene C-based 3D probes and their suitability for recording the neuronal activity over a 28-day period was demonstrated by maintaining the 1 kHz electrical impedance within a functional range (<400 kΩ) and achieving a reasonably high signal-to-noise ratio for detection of resolvable multi-unit neuronal activity on most recording sites in the probe. Immunohistochemical analysis of the implant site indicated strong correlations between the quality of recorded activity and the neuronal/astrocytic density around the probe. SIGNIFICANCE The provided electrophysiological and immunohistochemical data provide strong support to the viability of the developed probe technology. Furthermore, the obtained data provide insights into further optimization of the probe design, including tip geometry, use of neurotrophic and anti-inflammatory drugs in the Matrigel coating, and placement of the recording sites.


Journal of Neural Engineering | 2010

Neuronal loss due to prolonged controlled-current stimulation with chronically implanted microelectrodes in the cat cerebral cortex.

Douglas B. McCreery; Victor Pikov; Philip R. Troyk

Activated iridium microelectrodes were implanted for 450-1282 days in the sensorimotor cortex of seven adult domestic cats and then pulsed for 240 h (8 h per day for 30 days) at 50 Hz. Continuous stimulation at 2 nC/phase and with a geometric charge density of 100 microC cm(-2) produced no detectable change in neuronal density in the tissue surrounding the microelectrode tips. However, pulsing with a continuous 100% duty cycle at 4 nC/phase and with a geometric charge density of 200 microC cm(-2) induced loss of cortical neurons over a radius of at least 150 microm from the electrode tips. The same stimulus regimen but with a duty cycle of 50% (1 s of stimulation, and then 1 s without stimulation repeated for 8 h) produced neuronal loss within a smaller radius, approximately 60 microm from the center of the electrode tips. However, there also was significant loss of neurons surrounding the unpulsed electrodes, presumably as a result of mechanical injury due to their insertion into and long-term residence in the tissue, and this was responsible for most of the neuronal loss within 150 microm of the electrodes pulsed with the 50% duty cycle.


IEEE Transactions on Neural Systems and Rehabilitation Engineering | 2004

Arrays for chronic functional microstimulation of the lumbosacral spinal cord

Douglas B. McCreery; Victor Pikov; Albert Lossinsky; Leo A. Bullara; William F. Agnew

Our objective is to develop neural prostheses based on an array of microelectrodes implanted into the sacral spinal cord, that will allow persons with spinal cord injuries to regain control of their bladder and bowels. For our chronic cat model, we have developed two microelectrode arrays, one type containing nine discrete activated iridium microelectrodes and the second utilizing silicon substrate probes with multiple electrode sites on each probe. Both types can elicit an increase in the pressure within the urinary bladder of more than 40-mm Hg and/or relaxation of the urethral sphincter. A stimulus of 100 /spl mu/A and 400 /spl mu/s/ph at 20 Hz (charge-balanced pulses) was required to induce a large increase in bladder pressure or relaxation of the urethral sphincter. We found that 24 h of continuous stimulation with these parameters induced tissue injury (disrupted neuropil, infiltration of inflammatory cells, and loss of neurons close to the tip sites). However, a neural prosthesis that is intended to restore bladder control after spinal cord injury would not operate continuously. Thus, when this stimulus was applied for 24 h, at a 10% duty cycle (1 min of stimulation, then 9 min without stimulation) only minimal histologic changes were observed.


Journal of Neural Engineering | 2010

Modulation of neuronal activity and plasma membrane properties with low-power millimeter waves in organotypic cortical slices

Victor Pikov; Xianghong Arakaki; Michael G. Harrington; Scott E. Fraser; Peter H. Siegel

As millimeter waves (MMWs) are being increasingly used in communications and military applications, their potential effects on biological tissue has become an important issue for scientific inquiry. Specifically, several MMW effects on the whole-nerve activity were reported, but the underlying neuronal changes remain unexplored. This study used slices of cortical tissue to evaluate the MMW effects on individual pyramidal neurons under conditions mimicking their in vivo environment. The applied levels of MMW power are three orders of magnitude below the existing safe limit for human exposure of 1 mW cm(-2). Surprisingly, even at these low power levels, MMWs were able to produce considerable changes in neuronal firing rate and plasma membrane properties. At the power density approaching 1 microW cm(-2), 1 min of MMW exposure reduced the firing rate to one third of the pre-exposure level in four out of eight examined neurons. The width of the action potentials was narrowed by MMW exposure to 17% of the baseline value and the membrane input resistance decreased to 54% of the baseline value across all neurons. These effects were short lasting (2 min or less) and were accompanied by MMW-induced heating of the bath solution at 3 degrees C. Comparison of these results with previously published data on the effects of general bath heating of 10 degrees C indicated that MMW-induced effects cannot be fully attributed to heating and may involve specific MMW absorption by the tissue. Blocking of the intracellular Ca(2+)-mediated signaling did not significantly alter the MMW-induced neuronal responses suggesting that MMWs interacted directly with the neuronal plasma membrane. The presented results constitute the first demonstration of direct real-time monitoring of the impact of MMWs on nervous tissue at a microscopic scale. Implication of these findings for the therapeutic modulation of neuronal excitability is discussed.


Journal of Neural Engineering | 2007

Intraspinal stimulation for bladder voiding in cats before and after chronic spinal cord injury.

Victor Pikov; L.A. Bullara; Douglas B. McCreery

The long-term objective of this study is to develop neural prostheses for people with spinal cord injuries who are unable to voluntarily control their bladder. This feasibility study was performed in 22 adult cats. We implanted an array of microelectrodes into locations in the sacral spinal cord that are involved in the control of micturition reflexes. The effect of microelectrode stimulation was studied under light Propofol anesthesia at monthly intervals for up to 14 months. We found that electrical stimulation in the sacral parasympathetic nucleus at S(2) level or in adjacent ventrolateral white matter produced bladder contractions insufficient for inducing voiding, while stimulation at or immediately dorsal to the dorsal gray commissure at S(1) level produced strong (at least 20 mmHg) bladder contractions as well as strong (at least 40 mm Hg) external urethral sphincter relaxation, resulting in bladder voiding in 14 animals. In a subset of three animals, spinal cord transection was performed. For several months after the transection, intraspinal stimulation continued to be similarly or even more effective in inducing the bladder voiding as before the transection. We speculate that in the absence of the supraspinal connections, the plasticity in the local spinal circuitry played a role in the improved responsiveness to intraspinal stimulation.


IEEE Transactions on Biomedical Engineering | 2007

Performance of Multisite Silicon Microprobes Implanted Chronically in the Ventral Cochlear Nucleus of the Cat

Douglas B. McCreery; Albert Lossinsky; Victor Pikov

A central auditory prosthesis based on microstimulation within the ventral cochlear nucleus (VCN) offers a means of restoring hearing to persons whose auditory nerve has been destroyed bilaterally and cannot benefit from cochlear implants. Arrays of silicon probes with 16 stimulating sites were implanted into the VCN of adult cats, for up to 314 days. Compound neuronal responses evoked from the sites in the VCN were recorded periodically in the central nucleus of the contralateral inferior colliculus (ICC). The threshold and growth of most of the responses were stable for at least 250 days after implantation of the arrays. The responses evoked from the deepest and shallowest electrode sites did exhibit some changes over time but none of the thresholds exceeded 10 muA. The thresholds and growth of the compound responses from most of the stimulating sites were very stable over time, and comparable to those of chronically implanted single-site iridium microelectrodes. Multiunit neuronal activity evoked from the stimulating sites in the VCN was recorded along the dorsolateral-ventromedial (DLVM) axis of the ICC. The distribution, span and degree of overlap of the multiunit activity demonstrated the utility of the multisite, multishank array configuration as a means of accessing the neuronal populations in the VCN that encode various acoustic frequencies. These findings are encouraging for the prospects of developing an auditory prosthesis employing multisite silicon microprobes


Journal of Neurophysiology | 2014

Effects of millimeter wave irradiation and equivalent thermal heating on the activity of individual neurons in the leech ganglion

Sergii Romanenko; Peter H. Siegel; Daniel A. Wagenaar; Victor Pikov

Many of todays radiofrequency-emitting devices in telecommunication, telemedicine, transportation safety, and security/military applications use the millimeter wave (MMW) band (30–300 GHz). To evaluate the biological safety and possible applications of this radiofrequency band for neuroscience and neurology, we have investigated the physiological effects of low-intensity 60-GHz electromagnetic irradiation on individual neurons in the leech midbody ganglia. We applied incident power densities of 1, 2, and 4 mW/cm2 to the whole ganglion for a period of 1 min while recording the action potential with a standard sharp electrode electrophysiology setup. For comparison, the recognized U.S. safe exposure limit is 1 mW/cm2 for 6 min. During the exposure to MMWs and gradual bath heating at a rate of 0.04°C/s (2.4°C/min), the ganglionic neurons exhibited similar dose-dependent hyperpolarization of the plasma membrane and decrease in the action potential amplitude. However, narrowing of the action potential half-width during MMW irradiation at 4 mW/cm2 was 5 times more pronounced compared with that during equivalent bath heating of 0.6°C. Even more dramatic difference in the effects of MMW irradiation and bath heating was noted in the firing rate, which was suppressed at all applied MMW power densities and increased in a dose-dependent manner during gradual bath heating. The mechanism of enhanced narrowing of action potentials and suppressed firing by MMW irradiation, compared with that by gradual bath heating, is hypothesized to involve specific coupling of MMW energy with the neuronal plasma membrane.


Journal of Neural Engineering | 2012

A new EC-PC threshold estimation method for in vivo neural spike detection

Zhi Yang; Wentai Liu; Mohammad Reza Keshtkaran; Yin Zhou; Jian Xu; Victor Pikov; Cuntai Guan; Yong Lian

This paper models in vivo neural signals and noise for extracellular spike detection. Although the recorded data approximately follow Gaussian distribution, they clearly deviate from white Gaussian noise due to neuronal synchronization and sparse distribution of spike energy. Our study predicts the coexistence of two components embedded in neural data dynamics, one in the exponential form (noise) and the other in the power form (neural spikes). The prediction of the two components has been confirmed in experiments of in vivo sequences recorded from the hippocampus, cortex surface, and spinal cord; both acute and long-term recordings; and sleep and awake states. These two components are further used as references for threshold estimation. Different from the conventional wisdom of setting a threshold at 3×RMS, the estimated threshold exhibits a significant variation. When our algorithm was tested on synthesized sequences with a different signal to noise ratio and on/off firing dynamics, inferred threshold statistics track the benchmarks well. We envision that this work may be applied to a wide range of experiments as a front-end data analysis tool.


IEEE Transactions on Neural Systems and Rehabilitation Engineering | 2010

Bidirectional Telemetry Controller for Neuroprosthetic Devices

Vishnu Sharma; Douglas B. McCreery; Martin Han; Victor Pikov

We present versatile multifunctional programmable controller with bidirectional data telemetry, implemented using existing commercial microchips and standard Bluetooth protocol, which adds convenience, reliability, and ease-of-use to neuroprosthetic devices. Controller, weighing 190 g, is placed on animals back and provides bidirectional sustained telemetry rate of 500 kb/s, allowing real-time control of stimulation parameters and viewing of acquired data. In continuously-active state, controller consumes ~420 mW and operates without recharge for 8 h. It features independent 16-channel current-controlled stimulation, allowing current steering; customizable stimulus current waveforms; recording of stimulus voltage waveforms and evoked neuronal responses with stimulus artifact blanking circuitry. Flexibility, scalability, cost-efficiency, and a user-friendly computer interface of this device allow use in animal testing for variety of neuroprosthetic applications. Initial testing of the controller has been done in a feline model of brainstem auditory prosthesis. In this model, the electrical stimulation is applied to the array of microelectrodes implanted in the ventral cochlear nucleus, while the evoked neuronal activity was recorded with the electrode implanted in the contralateral inferior colliculus. Stimulus voltage waveforms to monitor the access impedance of the electrodes were acquired at the rate of 312 kilosamples/s. Evoked neuronal activity in the inferior colliculus was recorded after the blanking (transient silencing) of the recording amplifier during the stimulus pulse, allowing the detection of neuronal responses within 100 ¿s after the end of the stimulus pulse applied in the cochlear nucleus.

Collaboration


Dive into the Victor Pikov's collaboration.

Top Co-Authors

Avatar

Peter H. Siegel

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Douglas B. McCreery

Huntington Medical Research Institutes

View shared research outputs
Top Co-Authors

Avatar

Ellis Meng

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Brian J. Kim

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Curtis Lee

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Jonathan T. W. Kuo

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Seth A. Hara

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Tuan Hoang

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Christian A. Gutierrez

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Sergii Romanenko

California Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge