Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Victor Ramirez-Amaya is active.

Publication


Featured researches published by Victor Ramirez-Amaya.


The Journal of Neuroscience | 2006

Integration of New Neurons into Functional Neural Networks

Victor Ramirez-Amaya; Diano F. Marrone; Fred H. Gage; Paul F. Worley; Carol A. Barnes

Although it is established that new granule cells can be born and can survive in the adult mammalian hippocampus, there remains some question concerning the functional integration of these neurons into behaviorally relevant neural networks. By using high-resolution confocal microscopy, we have applied a new strategy to address the question of functional integration of newborn neurons into networks that mediate spatial information processing and memory formation. Exploration-induced expression of the immediate-early gene Arc in hippocampal cells has been linked to cellular activity observed in electrophysiological recordings under the same behavioral conditions. We investigated whether mature (5-month-old), newborn granule cells express Arc in response to a discrete spatial experience by detecting the expression of Arc in combination with NeuN (neuron-specific nuclear protein)-positive and bromodeoxyuridine-positive cells. We found that mature new granule cells do indeed express Arc in response to an exploration experience, supporting the idea that these cells are well integrated into hippocampal circuits. The proportion of mature newborn neurons that expressed Arc in response to exploration, however, was significantly higher (∼2.8%) than the proportion of cells that expressed Arc in the already existing population of granule cells (∼1.6%; p < 0.01). This finding extends previous data suggesting that the cellular physiology of newborn granule neurons differs from that of the existing population by indicating that these properties are retained in mature adult-generated neurons. Thus, these data have interesting implications for network models of spatial information processing and the role of hippocampal circuits in memory, indicating that mature new neurons are selectively recruited into hippocampal cell assemblies in higher proportions than older cells.


The Journal of Neuroscience | 2005

Spatial Exploration-Induced Arc mRNA and Protein Expression: Evidence for Selective, Network-Specific Reactivation

Victor Ramirez-Amaya; Almira Vazdarjanova; Dalia M. Mikhael; Susanna Rosi; Paul F. Worley; Carol A. Barnes

The immediate-early gene Arc is transcribed in neurons that are part of stable neural networks activated during spatial exploratory behaviors. Arc protein has been demonstrated to regulate AMPA-type glutamate receptor trafficking by recruiting endosomal pathways, suggesting a direct role in synaptic plasticity. The purpose of the present study is to examine the fidelity of Arc mRNA translation and the temporal dynamics of behaviorally induced Arc protein expression after rats explore a novel environment. These experiments reveal two waves of Arc protein expression after a single exploration session. In the initial wave, virtually all cells that express Arc mRNA in the hippocampus and parietal cortex also express Arc protein, indicating, at a cellular level, that mRNA transcription and translation are closely correlated from 30 min to 2 h in hippocampal CA and parietal neurons. A second wave of protein expression spans the interval from 8 to 24 h and is also remarkably specific to cells active in the original behavior-induced network. This second wave is detected in a subset of the original active network and displays the novel property that the proportions of Arc-positive neurons become correlated among regions at 24 h. This suggests that the second expression wave is driven by network activity, and the stabilization of circuits reflecting behavioral experience may occur in temporally discrete phases, as memories become consolidated. This is the first demonstration of network-selective translational events consequent to spatial behavior and suggests a role for immediate-early genes in circuit-specific, late-phase synaptic biology.


The Journal of Comparative Neurology | 2006

Spatial exploration induces ARC, a plasticity-related immediate-early gene, only in calcium/calmodulin-dependent protein kinase II-positive principal excitatory and inhibitory neurons of the rat forebrain.

Almira Vazdarjanova; Victor Ramirez-Amaya; Nathan Insel; Thane K. Plummer; Susanna Rosi; Shoaib Chowdhury; Dalia M. Mikhael; Paul F. Worley; John F. Guzowski; Carol A. Barnes

Active behavior, such as exploring a novel environment, induces the expression of the immediate‐early gene Arc (activity‐regulated cytoskeletal associated protein, or Arg 3.1) in many brain regions, including the hippocampus, neocortex, and striatum. Arc messenger ribonucleic acid and protein are localized in activated dendrites, and Arc protein is required for the maintenance of long‐term potentiation and memory consolidation. Although previous evidence suggests that Arc is expressed in neurons, there is no direct demonstration that only neurons can express Arc. Furthermore, there is no characterization of the main neuronal types that express Arc. The data reported here show that behavior‐ or seizure‐induced Arc expression in the hippocampus, primary somatosensory cortex, and dorsal striatum of rats colocalizes only with neuronal (NeuN‐positive) and not with glial (GFAP‐positive) cells. Furthermore, Arc was found exclusively in non‐GABAergic α‐CaMKII‐positive hippocampal and neocortical neurons of rats that had explored a novel environment. Some GAD65/67‐positive neurons in these regions were observed to express Arc, but only after a very strong stimulus (electroconvulsive seizure). In the dorsal striatum, spatial exploration induced Arc only in GABAergic and α‐CaMKII‐positive neurons. Combined, these results show that although a very strong stimulus (seizure) can induce Arc in a variety of neurons, behavior induces Arc in the CaMKII‐positive principal neurons of the hippocampus, neocortex, and dorsal striatum. These results, coupled with recent in vitro findings of interactions between Arc and CaMKII, are consistent with the hypothesis that Arc and CaMKII act as plasticity partners to promote functional and/or structural synaptic modifications that accompany learning. J. Comp. Neurol. 498:317–329, 2006.


Neuroscience | 2006

Memantine protects against LPS-induced neuroinflammation, restores behaviorally-induced gene expression and spatial learning in the rat

Susanna Rosi; Almira Vazdarjanova; Victor Ramirez-Amaya; Paul F. Worley; Carol A. Barnes; Gary L. Wenk

Neuroinflammation is reliably associated with the pathogenesis of a number of neurodegenerative diseases, and can be detected by the presence of activated microglia. Neuroinflammation can be induced by chronic lipopolysaccharide (LPS) infusion into the 4th ventricle of the rat resulting in region-selective microglia activation and impaired hippocampal-dependent memory. Furthermore, this treatment results in altered behaviorally-induced expression of the immediate early gene Arc, indicating altered network activity. LPS is known to activate microglia directly, leading to increased glutamate release, and in enhanced N-methyl-d-aspartate (NMDA) -dependent signaling. Taken together, the foregoing suggests that decreasing NMDA receptor activation during early stages of chronic neuroinflammation should reduce a) microglia activation, b) overexpression of Arc, and c) spatial memory deficits. Memantine, a low to moderate affinity open channel uncompetitive NMDA receptor antagonist, at low doses was used here to test these hypotheses. Rats were chronically infused into the 4th ventricle for 28 days with LPS alone, vehicle alone (via osmotic minipump) or LPS and memantine (10 mg/kg/day memantine s.c.). The results reported here demonstrate that memantine reduces OX6-immunolabeling for activated microglia, spares resident microglia, returns Arc (activity-regulated cytoskeletal associated protein, protein) -expressing neuronal populations to control levels (as revealed by Arc immunolabeling and fluorescence in situ hybridization), and ameliorates the spatial memory impairments produced by LPS alone. These data indicate that memantine therapy at low doses, recreating plasma levels similar to those of therapeutic doses in human, acts in part through its ability to reduce the effects of neuroinflammation, resulting in normal gene expression patterns and spatial learning. Combined, these findings suggest that low, therapeutically relevant doses of memantine delivered early in the development of neuroinflammation-influenced diseases may confer neural and cognitive protection.


The Journal of Neuroscience | 2005

Neuroinflammation Alters the Hippocampal Pattern of Behaviorally Induced Arc Expression

Susanna Rosi; Victor Ramirez-Amaya; Almira Vazdarjanova; Paul F. Worley; Carol A. Barnes; Gary L. Wenk

Neuroinflammation is associated with a variety of neurological and pathological diseases, such as Alzheimers disease (AD), and is reliably detected by the presence of activated microglia. In early AD, the highest degree of activated microglia is observed in brain regions involved in learning and memory. To investigate whether neuroinflammation alters the pattern of rapid de novo gene expression associated with learning and memory, we studied the expression of the activity-induced immediate early gene Arc in the hippocampus of rats with experimental neuroinflammation. Rats were chronically infused with lipopolysaccharide (LPS) (0.25 μg/h) into the fourth ventricle for 28 d. On day 29, the rats explored twice a novel environment for 5 min, separated by 45 or 90 min. In the dentate gyrus and CA3 regions of LPS-infused rats, Arc and OX-6 (specific for major histocompatibility complex class II antigens) immunolabeling and Arc fluorescence in situ hybridization revealed both activated microglia (OX-6 immunoreactivity) and elevated exploration-induced Arc expression compared with control-infused rats. In contrast, in the CA1 of LPS-infused rats, where there was no OX-6 immunostaining, exploration-induced Arc mRNA and protein remained similar in both LPS- and control-infused rats. LPS-induced neuroinflammation did not affect basal levels of Arc expression. Behaviorally induced Arc expression was altered only within the regions showing activated microglia (OX-6 immunoreactivity), suggesting that neuroinflammation may alter the coupling of neural activity with macromolecular synthesis implicated in learning and plasticity. This activity-related alteration in Arc expression induced by neuroinflammation may contribute to the cognitive deficits found in diseases associated with inflammation, such as AD.


Neuroendocrinology | 2005

Analysis of the Stress Response in Rats Trained in the Water-Maze: Differential Expression of Corticotropin-Releasing Hormone, CRH-R1, Glucocorticoid Receptors and Brain-Derived Neurotrophic Factor in Limbic Regions

Argel Aguilar-Valles; Edith Sánchez; Patricia de Gortari; Israela Balderas; Victor Ramirez-Amaya; Federico Bermúdez-Rattoni; Patricia Joseph-Bravo

Glucocorticoids and corticotropin-releasing hormone (CRH) are key regulators of stress responses. Different types of stress activate the CRH system; in hypothalamus, CRH expression and release are increased by physical or psychological stressors while in amygdala, preferentially by psychological stress. Learning and memory processes are modulated by glucocorticoids and stress at different levels. To characterize the kind of stress provoked by a hippocampal-dependent task such as spatial learning, we compared the expression profile of glucocorticoid receptor (GR), pro-CRH and CRH-R1 mRNAs (analyzed by RT-PCR), in amygdala, hippocampus and hypothalamus and quantified serum corticosterone levels by radioimmunoassay at different stages of training. mRNA levels of brain-derived neurotrophic factor (BDNF) were also quantified due to its prominent role in learning and memory processes. Male Wistar rats trained for 1, 3 or 5 days in the Morris water-maze (10 trials/day) were sacrificed 5–60 min the after last trial. A strong stress response occurred at day one in both yoked and trained animals (increased corticosterone and hypothalamic pro-CRH and CRH-R1 mRNA levels); changes gradually diminished as the test progressed. In amygdala, pro-CRH mRNA levels decreased while those of BDNF augmented when stress was highest, in yoked and trained animals. Hippocampi, of both yoked and trained groups, had decreased levels of GR mRNA on days 1 and 3, normalizing by day 5, while those of pro-CRH and CRH-R1 increased after the 3rd day. Increased gene expression, specifically due to spatial learning, occurred only for hippocampal BDNF since day 3. These results show that the Morris water-maze paradigm induces a strong stress response that is gradually attenuated. Inhibition of CRH expression in amygdala suggests that the stress inflicted is of physical but not of psychological nature and could lead to reduced fear or anxiety.


Journal of Neuroinflammation | 2004

Chronic brain inflammation leads to a decline in hippocampal NMDA-R1 receptors

Susanna Rosi; Victor Ramirez-Amaya; Beatrice Hauss-Wegrzyniak; Gary L. Wenk

BackgroundNeuroinflammation plays a prominent role in the progression of Alzheimers disease and may be responsible for degeneration in vulnerable regions such as the hippocampus. Neuroinflammation is associated with elevated levels of extracellular glutamate and potentially an enhanced stimulation of glutamate N-methyl-D-aspartate receptors. This suggests that neurons that express these glutamate receptors might be at increased risk of degeneration in the presence of chronic neuroinflammation.MethodsWe have characterized a novel model of chronic brain inflammation using a slow infusion of lipopolysaccharide into the 4th ventricle of rats. This model reproduces many of the behavioral, electrophysiological, neurochemical and neuropathological changes associated with Alzheimers disease.ResultsThe current study demonstrated that chronic neuroinflammation is associated with the loss of N-methyl-D-aspartate receptors, as determined both qualitatively by immunohistochemistry and quantitatively by in vitro binding studies using [3H]MK-801, within the hippocampus and entorhinal cortex.ConclusionThe gradual loss of function of this critical receptor within the temporal lobe region may contribute to some of the cognitive deficits observed in patients with Alzheimers disease.


Brain | 2009

Accuracy of hippocampal network activity is disrupted by neuroinflammation: rescue by memantine

Susanna Rosi; Victor Ramirez-Amaya; A. Vazdarjanova; E. E. Esparza; P. B. Larkin; John R. Fike; Gary L. Wenk; Carol A. Barnes

Understanding how the hippocampus processes episodic memory information during neuropathological conditions is important for treatment and prevention applications. Previous data have shown that during chronic neuroinflammation the expression of the plasticity related behaviourally-induced immediate early gene Arc is altered within the CA3 and the dentate gyrus; both of these hippocampal regions show a pronounced increase in activated microglia. Low doses of memantine, a low to moderate affinity open channel uncompetitive N-Methyl-d-aspartate receptor antagonist, reduce neuroinflammation, return Arc expression to control levels and attenuate cognitive deficits induced by lipopolysaccharide. Here we investigate whether neuroinflammation affects the accuracy of information processing in the CA3 and CA1 hippocampal regions and if this is modified by memantine treatment. Using the immediate early gene-based brain-imaging method called cellular analysis of temporal activity by fluorescence in situ hybridization, it is possible to detect primary transcripts at the genomic alleles; this provides exceptional temporal and cellular resolution and facilitates the mapping of neuronal activity. Here, we use this method to compare the neuronal populations activated by two separate experiences in CA1 and CA3 and evaluate the accuracy of information processing during chronic neuroinflammation. Our results show that the CA3 pyramidal neuron activity is not stable between two exposures to the same environment context or two different contexts. CA1 networks, however, do not differ from control conditions. These data suggest that during chronic neuroinflammation, the CA3 networks show a disrupted ability to encode spatial information, and that CA1 neurons can work independently of CA3. Importantly, memantine treatment is able to partially normalize information processing in the hippocampus, suggesting that when given early during the development of the pathology memantine confers neuronal and cognitive protection while indirectly prevents pathological microglial activation.


Brain Research | 2011

Increase of mushroom spine density in CA1 apical dendrites produced by water maze training is prevented by ovariectomy.

V. Beltrán-Campos; Roberto A. Prado-Alcalá; U. León-Jacinto; Azucena Aguilar-Vázquez; Gina L. Quirarte; Victor Ramirez-Amaya; Sofía Díaz-Cintra

Dendritic spine density increases after spatial learning in hippocampal CA1 pyramidal neurons. Gonadal activity also regulates spine density, and abnormally low levels of circulating estrogens are associated with deficits in hippocampus-dependent tasks. To determine if gonadal activity influences behaviorally induced structural changes in CA1, we performed a morphometric analysis on rapid Golgi-stained tissue from ovariectomized (Ovx) and sham-operated (Sham) female rats 7 days after they were given a single water maze (WM) training session (hidden platform procedure) or a swimming session in the tank containing no platform (SC). We evaluated the density of different dendritic spine types (stubby, thin, and mushroom) in three segments (distal, medial, and proximal) of the principal apical dendrite from hippocampal CA1 pyramidal neurons. Performance in the WM task was impaired in Ovx animals compared to Sham controls. Total spine density increased after WM in Sham animals in the proximal and distal CA1 apical dendrite segments but not in the medial. Interestingly, mushroom spine density consistently increased in all CA1 segments after WM. As compared to the Sham group, SC-Ovx rats showed spine pruning in all the segments, but mushroom spine density did not change significantly. In Ovx rats, WM training increased the density of stubby and thin, but not mushroom spines. Thus, ovariectomy alone produces spine pruning, while spatial learning increases spine density in spite of ovariectomy. Finally, the results suggest that mushroom spine production in CA1 after spatial learning requires gonadal activity, whereas this activity is not required for mushroom spine maintenance.


Brain Behavior and Immunity | 1999

Conditioned enhancement of antibody production is disrupted by insular cortex and amygdala but not hippocampal lesions.

Victor Ramirez-Amaya; Federico Bermúdez-Rattoni

Pavlovian conditioning procedures can be used to activate the immune system. A reliable conditioned increase of antibody production can be obtained in rats that have previously received a gustative or odor stimulus as the conditioned stimulus paired with an antigen, by exposing the animals to the conditioned stimulus alone. We showed evidence that an excitotoxic lesion bilaterally applied into the insular cortex or the amygdala, but not into the dorsal hippocampus, impaired the acquisition of both odor and gustatory conditioned immune enhancement. We found no effects of lesions on normal antibody production. These results suggest that the amygdala and the insular cortex are involved in the neural-immune interactions that mediate conditioned immunity.

Collaboration


Dive into the Victor Ramirez-Amaya's collaboration.

Top Co-Authors

Avatar

Federico Bermúdez-Rattoni

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul F. Worley

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Susanna Rosi

University of California

View shared research outputs
Top Co-Authors

Avatar

Israela Balderas

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Patricia Joseph-Bravo

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Argel Aguilar-Valles

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge