Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Victor S. Batista is active.

Publication


Featured researches published by Victor S. Batista.


Journal of the American Chemical Society | 2008

Quantum Mechanics/Molecular Mechanics Study of the Catalytic Cycle of Water Splitting in Photosystem II

Eduardo M. Sproviero; José A. Gascón; James P. McEvoy; and Gary W. Brudvig; Victor S. Batista

This paper investigates the mechanism of water splitting in photosystem II (PSII) as described by chemically sensible models of the oxygen-evolving complex (OEC) in the S0-S4 states. The reaction is the paradigm for engineering direct solar fuel production systems since it is driven by solar light and the catalyst involves inexpensive and abundant metals (calcium and manganese). Molecular models of the OEC Mn3CaO4Mn catalytic cluster are constructed by explicitly considering the perturbational influence of the surrounding protein environment according to state-of-the-art quantum mechanics/molecular mechanics (QM/MM) hybrid methods, in conjunction with the X-ray diffraction (XRD) structure of PSII from the cyanobacterium Thermosynechococcus elongatus. The resulting models are validated through direct comparisons with high-resolution extended X-ray absorption fine structure spectroscopic data. Structures of the S3, S4, and S0 states include an additional mu-oxo bridge between Mn(3) and Mn(4), not present in XRD structures, found to be essential for the deprotonation of substrate water molecules. The structures of reaction intermediates suggest a detailed mechanism of dioxygen evolution based on changes in oxidization and protonation states and structural rearrangements of the oxomanganese cluster and surrounding water molecules. The catalytic reaction is consistent with substrate water molecules coordinated as terminal ligands to Mn(4) and calcium and requires the formation of an oxyl radical by deprotonation of the substrate water molecule ligated to Mn(4) and the accumulation of four oxidizing equivalents. The oxyl radical is susceptible to nucleophilic attack by a substrate water molecule initially coordinated to calcium and activated by two basic species, including CP43-R357 and the mu-oxo bridge between Mn(3) and Mn(4). The reaction is concerted with water ligand exchange, swapping the activated water by a water molecule in the second coordination shell of calcium.


Biochemistry | 2011

S1-State Model of the O2-Evolving Complex of Photosystem II

Sandra Luber; Ivan Rivalta; Yasufumi Umena; Keisuke Kawakami; Jian Ren Shen; Nobuo Kamiya; Gary W. Brudvig; Victor S. Batista

We introduce a quantum mechanics/molecular mechanics model of the oxygen-evolving complex of photosystem II in the S(1) Mn(4)(IV,III,IV,III) state, where Ca(2+) is bridged to manganese centers by the carboxylate moieties of D170 and A344 on the basis of the new X-ray diffraction (XRD) model recently reported at 1.9 Å resolution. The model is also consistent with high-resolution spectroscopic data, including polarized extended X-ray absorption fine structure data of oriented single crystals. Our results provide refined intermetallic distances within the Mn cluster and suggest that the XRD model most likely corresponds to a mixture of oxidation states, including species more reduced than those observed in the catalytic cycle of water splitting.


Journal of the American Chemical Society | 2015

Facet-Dependent Photoelectrochemical Performance of TiO2 Nanostructures: An Experimental and Computational Study

Chuanhao Li; Christopher Koenigsmann; Wendu Ding; Benjamin Rudshteyn; Ke R. Yang; Kevin P. Regan; Steven J. Konezny; Victor S. Batista; Gary W. Brudvig; Charles A. Schmuttenmaer; Jae-Hong Kim

The behavior of crystalline nanoparticles depends strongly on which facets are exposed. Some facets are more active than others, but it is difficult to selectively isolate particular facets. This study provides fundamental insights into photocatalytic and photoelectrochemical performance of three types of TiO(2) nanoparticles with predominantly exposed {101}, {010}, or {001} facets, where 86-99% of the surface area is the desired facet. Photodegradation of methyl orange reveals that {001}-TiO(2) has 1.79 and 3.22 times higher photocatalytic activity than {010} and {101}-TiO(2), respectively. This suggests that the photochemical performance is highly correlated with the surface energy and the number of under-coordinated surface atoms. In contrast, the photoelectrochemical performance of the faceted TiO(2) nanoparticles sensitized with the commercially available MK-2 dye was highest with {010}-TiO(2) which yielded an overall cell efficiency of 6.1%, compared to 3.2% for {101}-TiO(2) and 2.6% for {001}-TiO(2) prepared under analogous conditions. Measurement of desorption kinetics and accompanying computational modeling suggests a stronger covalent interaction of the dye with the {010} and {101} facets compared with the {001} facet. Time-resolved THz spectroscopy and transient absorption spectroscopy measure faster electron injection dynamics when MK-2 is bound to {010} compared to other facets, consistent with extensive computational simulations which indicate that the {010} facet provides the most efficient and direct pathway for interfacial electron transfer. Our experimental and computational results establish for the first time that photoelectrochemical performance is dependent upon the binding energy of the dye as well as the crystalline structure of the facet, as opposed to surface energy alone.


Journal of Chemical Theory and Computation | 2006

QM/MM Models of the O2-Evolving Complex of Photosystem II.

Eduardo M. Sproviero; José A. Gascón; James P. McEvoy; Gary W. Brudvig; Victor S. Batista

This paper introduces structural models of the oxygen-evolving complex of photosystem II (PSII) in the dark-stable S1 state, as well as in the reduced S0 and oxidized S2 states, with complete ligation of the metal-oxo cluster by amino acid residues, water, hydroxide, and chloride. The models are developed according to state-of-the-art quantum mechanics/molecular mechanics (QM/MM) hybrid methods, applied in conjunction with the X-ray crystal structure of PSII from the cyanobacterium Thermosynechococcus elongatus, recently reported at 3.5 Å resolution. Manganese and calcium ions are ligated consistently with standard coordination chemistry assumptions, supported by biochemical and spectroscopic data. Furthermore, the calcium-bound chloride ligand is found to be bound in a position consistent with pulsed electron paramagnetic resonance data obtained from acetate-substituted PSII. The ligation of protein ligands includes monodentate coordination of D1-D342, CP43-E354, and D1-D170 to Mn(1), Mn(3), and Mn(4), respectively; η(2) coordination of D1-E333 to both Mn(3) and Mn(2); and ligation of D1-E189 and D1-H332 to Mn(2). The resulting QM/MM structural models are consistent with available mechanistic data and also are compatible with X-ray diffraction models and extended X-ray absorption fine structure measurements of PSII. It is, therefore, conjectured that the proposed QM/MM models are particularly relevant to the development and validation of catalytic water-oxidation intermediates.


Journal of Chemical Physics | 1999

Semiclassical molecular dynamics simulations of excited state double-proton transfer in 7-azaindole dimers

Victor Guallar; Victor S. Batista; William H. Miller

An ab initio excited state potential energy surface is constructed for describing excited state double proton transfer in the tautomerization reaction of photo-excited 7-azaindole dimers, and the ultrafast dynamics is simulated using the semiclassical (SC) initial value representation (IVR). The potential energy surface, determined in a reduced dimensionality, is obtained at the CIS level of quantum chemistry, and an approximate version of the SC-IVR approach is introduced which scales linearly with the number of degrees of freedom of the molecular system. The accuracy of this approximate SC-IVR approach is verified by comparing our semiclassical results with full quantum mechanical calculations. We find that proton transfer usually occurs during the first intermonomer symmetric-stretch vibration, about 100 fs after photoexcitation of the system, and produces an initial 15 percent population decay of the reactant base-pair, which is significantly reduced by isotopic substitution.


Journal of Physical Chemistry Letters | 2013

Functional Role of Pyridinium during Aqueous Electrochemical Reduction of CO2 on Pt(111).

Ertem Mz; Steven J. Konezny; Araujo Cm; Victor S. Batista

Recent breakthroughs in electrochemical studies have reported aqueous CO2 reduction to formic acid, formaldehyde, and methanol at low overpotentials (-0.58 V versus SCE), with a Pt working electrode in acidic pyridine (Pyr) solutions. We find that CO2 is reduced by H atoms bound to the Pt surface that are transferred as hydrides to CO2 in a proton-coupled hydride transfer (PCHT) mechanism activated by pyridinium (PyrH(+)), CO2 + Pt-H + PyrH(+) + e(-) → Pyr + Pt + HCO2H. The surface-bound H atoms consumed by CO2 reduction is replenished by the one-electron reduction of PyrH(+) through the proton-coupled electron transfer (PCET), PyrH(+) + Pt + e(-) → Pyr + Pt-H. Pyridinium is essential to establish a high concentration of Brønsted acid in contact with CO2 and with the Pt surface, much higher than the concentration of free protons. These findings are particularly relevant to generate fuels with a carbon-neutral footprint.


Photochemical and Photobiological Sciences | 2005

The mechanism of photosynthetic water splitting

James P. McEvoy; Jose A. Gascon; Victor S. Batista; Gary W. Brudvig

Oxygenic photosynthesis, which provides the biosphere with most of its chemical energy, uses water as its source of electrons. Water is photochemically oxidized by the protein complex photosystem II (PSII), which is found, along with other proteins of the photosynthetic light reactions, in the thylakoid membranes of cyanobacteria and of green plant chloroplasts. Water splitting is catalyzed by the oxygen-evolving complex (OEC) of PSII, producing dioxygen gas, protons and electrons. O(2) is released into the atmosphere, sustaining all aerobic life on earth; product protons are released into the thylakoid lumen, augmenting a proton concentration gradient across the membrane; and photo-energized electrons pass to the rest of the electron-transfer pathway. The OEC contains four manganese ions, one calcium ion and (almost certainly) a chloride ion, but its precise structure and catalytic mechanism remain unclear. In this paper, we develop a chemically complete structure of the OEC and its environment by using molecular mechanics calculations to extend and slightly adjust the recently-obtained X-ray crystallographic model with reference to this structure and to some important recent experimental results.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Allosteric pathways in imidazole glycerol phosphate synthase

Ivan Rivalta; Mohammad M. Sultan; Ning-Shiuan Lee; Gregory Manley; J. Patrick Loria; Victor S. Batista

Protein allosteric pathways are investigated in the imidazole glycerol phosphate synthase heterodimer in an effort to elucidate how the effector (PRFAR, N′-[(5′-phosphoribulosyl)formimino]-5-aminoimidazole-4-carboxamide ribonucleotide) activates glutaminase catalysis at a distance of 25 Å from the glutamine-binding site. We apply solution NMR techniques and community analysis of dynamical networks, based on mutual information of correlated protein motions in the active and inactive enzymes. We find evidence that the allosteric pathways in the PRFAR bound enzyme involve conserved residues that correlate motion of the PRFAR binding loop to motion at the protein-protein interface, and ultimately at the glutaminase active site. The imidazole glycerol phosphate synthase bienzyme is an important branch point for the histidine and nucleotide biosynthetic pathways and represents a potential therapeutic target against microbes. The proposed allosteric mechanism and the underlying allosteric pathways provide fundamental insights for the design of new allosteric drugs and/or alternative herbicides.


Biochemistry | 2011

Structural-functional role of chloride in photosystem II.

Ivan Rivalta; Muhamed Amin; Sandra Luber; Serguei Vassiliev; Ravi Pokhrel; Yasufumi Umena; Keisuke Kawakami; Jian Ren Shen; Nobuo Kamiya; Doug Bruce; Gary W. Brudvig; M. R. Gunner; Victor S. Batista

Chloride binding in photosystem II (PSII) is essential for photosynthetic water oxidation. However, the functional roles of chloride and possible binding sites, during oxygen evolution, remain controversial. This paper examines the functions of chloride based on its binding site revealed in the X-ray crystal structure of PSII at 1.9 Å resolution. We find that chloride depletion induces formation of a salt bridge between D2-K317 and D1-D61 that could suppress the transfer of protons to the lumen.


Journal of the American Chemical Society | 2016

Electrochemical CO2 Reduction to Hydrocarbons on a Heterogeneous Molecular Cu Catalyst in Aqueous Solution

Zhe Weng; Jianbing Jiang; Yueshen Wu; Zishan Wu; Xiaoting Guo; Kelly L. Materna; Wen Liu; Victor S. Batista; Gary W. Brudvig; Hailiang Wang

Exploration of heterogeneous molecular catalysts combining the atomic-level tunability of molecular structures and the practical handling advantages of heterogeneous catalysts represents an attractive approach to developing high-performance catalysts for important and challenging chemical reactions such as electrochemical carbon dioxide reduction which holds the promise for converting emissions back to fuels utilizing renewable energy. Thus, far, efficient and selective electroreduction of CO2 to deeply reduced products such as hydrocarbons remains a big challenge. Here, we report a molecular copper-porphyrin complex (copper(II)-5,10,15,20-tetrakis(2,6-dihydroxyphenyl)porphyrin) that can be used as a heterogeneous electrocatalyst with high activity and selectivity for reducing CO2 to hydrocarbons in aqueous media. At -0.976 V vs the reversible hydrogen electrode, the catalyst is able to drive partial current densities of 13.2 and 8.4 mA cm(-2) for methane and ethylene production from CO2 reduction, corresponding to turnover frequencies of 4.3 and 1.8 molecules·site(-1)·s(-1) for methane and ethylene, respectively. This represents the highest catalytic activity to date for hydrocarbon production over a molecular CO2 reduction electrocatalyst. The unprecedented catalytic performance is attributed to the built-in hydroxyl groups in the porphyrin structure and the reactivity of the copper(I) metal center.

Collaboration


Dive into the Victor S. Batista's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ivan Rivalta

École normale supérieure de Lyon

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge