Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Victor Silva Aguirre is active.

Publication


Featured researches published by Victor Silva Aguirre.


Nature | 2011

Gravity modes as a way to distinguish between hydrogen- and helium-burning red giant stars

Timothy R. Bedding; Benoit Mosser; Daniel Huber; Josefina Montalban; P. G. Beck; Joergen Christensen-Dalsgaard; Yvonne P. Elsworth; Rafael Arenas Garcia; Andrea Miglio; D. Stello; T. R. White; Joris De Ridder; S. Hekker; Conny Aerts; C. Barban; K. Belkacem; Anne-Marie Broomhall; Timothy M. Brown; Derek L. Buzasi; Fabien Carrier; William J. Chaplin; Maria Pia di Mauro; Marc-Antoine Dupret; S. Frandsen; Ronald L. Gilliland; M. J. Goupil; Jon M. Jenkins; T. Kallinger; Steven D. Kawaler; Hans Kjeldsen

Red giants are evolved stars that have exhausted the supply of hydrogen in their cores and instead burn hydrogen in a surrounding shell. Once a red giant is sufficiently evolved, the helium in the core also undergoes fusion. Outstanding issues in our understanding of red giants include uncertainties in the amount of mass lost at the surface before helium ignition and the amount of internal mixing from rotation and other processes. Progress is hampered by our inability to distinguish between red giants burning helium in the core and those still only burning hydrogen in a shell. Asteroseismology offers a way forward, being a powerful tool for probing the internal structures of stars using their natural oscillation frequencies. Here we report observations of gravity-mode period spacings in red giants that permit a distinction between evolutionary stages to be made. We use high-precision photometry obtained by the Kepler spacecraft over more than a year to measure oscillations in several hundred red giants. We find many stars whose dipole modes show sequences with approximately regular period spacings. These stars fall into two clear groups, allowing us to distinguish unambiguously between hydrogen-shell-burning stars (period spacing mostly ∼50 seconds) and those that are also burning helium (period spacing ∼100 to 300 seconds).


The Astrophysical Journal | 2013

FUNDAMENTAL PROPERTIES OF KEPLER PLANET-CANDIDATE HOST STARS USING ASTEROSEISMOLOGY

Daniel Huber; W. J. Chaplin; Jørgen Christensen-Dalsgaard; Ronald L. Gilliland; Hans Kjeldsen; Lars A. Buchhave; Debra A. Fischer; Jack J. Lissauer; Jason F. Rowe; Roberto Sanchis-Ojeda; Sarbani Basu; R. Handberg; S. Hekker; Andrew W. Howard; Howard Isaacson; C. Karoff; David W. Latham; Mikkel N. Lund; M. Lundkvist; Geoffrey W. Marcy; A. Miglio; Victor Silva Aguirre; D. Stello; T. Arentoft; Timothy R. Bedding; Christopher J. Burke; Jessie L. Christiansen; Y. Elsworth; Michael R. Haas; Steven D. Kawaler

We have used asteroseismology to determine fundamental properties for 66 Kepler planet-candidate host stars, with typical uncertainties of 3% and 7% in radius and mass, respectively. The results include new asteroseismic solutions for four host stars with confirmed planets (Kepler-4, Kepler-14, Kepler-23 and Kepler-25) and increase the total number of Kepler host stars with asteroseismic solutions to 77. A comparison with stellar properties in the planet-candidate catalog by Batalha et al. shows that radii for subgiants and giants obtained from spectroscopic follow-up are systematically too low by up to a factor of 1.5, while the properties for unevolved stars are in good agreement. We furthermore apply asteroseismology to confirm that a large majority of cool main-sequence hosts are indeed dwarfs and not misclassified giants. Using the revised stellar properties, we recalculate the radii for 107 planet candidates in our sample, and comment on candidates for which the radii change from a previously giant-planet/brown-dwarf/stellar regime to a sub-Jupiter size or vice versa. A comparison of stellar densities from asteroseismology with densities derived from transit models in Batalha et al. assuming circular orbits shows significant disagreement for more than half of the sample due to systematics in the modeled impact parameters or due to planet candidates that may be in eccentric orbits. Finally, we investigate tentative correlations between host-star masses and planet-candidate radii, orbital periods, and multiplicity, but caution that these results may be influenced by the small sample size and detection biases.


Science | 2013

Stellar Spin-Orbit Misalignment in a Multiplanet System

Daniel Huber; Joshua A. Carter; Mauro Barbieri; A. Miglio; Katherine M. Deck; Daniel C. Fabrycky; Benjamin T. Montet; Lars A. Buchhave; W. J. Chaplin; S. Hekker; Josefina Montalban; Roberto Sanchis-Ojeda; Sarbani Basu; Timothy R. Bedding; T. L. Campante; Joergen Christensen-Dalsgaard; Y. Elsworth; D. Stello; T. Arentoft; Eric B. Ford; Ronald L. Gilliland; R. Handberg; Andrew W. Howard; Howard Isaacson; John Asher Johnson; C. Karoff; Steven D. Kawaler; Hans Kjeldsen; David W. Latham; Mikkel N. Lund

Misaligned Planets Stars with multiple coplanar planets have not been seen to show misalignments between the equatorial plane of the star and the orbital plane of the planets—a diagnostic of the dynamical history of planetary systems. Huber et al. (p. 331) analyzed the Kepler 56 planetary system, which contains a giant-sized and an intermediate-sized planet. The planets have orbits that are close to coplanar, but the planetary orbits are misaligned with the stellar equator. A third companion in a wide orbit, which could be another star or a planet, could explain the misaligned configuration. Kepler observations show that stellar spin-orbit misalignments are not confined to planetary systems with hot Jupiters. Stars hosting hot Jupiters are often observed to have high obliquities, whereas stars with multiple coplanar planets have been seen to have low obliquities. This has been interpreted as evidence that hot-Jupiter formation is linked to dynamical disruption, as opposed to planet migration through a protoplanetary disk. We used asteroseismology to measure a large obliquity for Kepler-56, a red giant star hosting two transiting coplanar planets. These observations show that spin-orbit misalignments are not confined to hot-Jupiter systems. Misalignments in a broader class of systems had been predicted as a consequence of torques from wide-orbiting companions, and indeed radial velocity measurements revealed a third companion in a wide orbit in the Kepler-56 system.


Nature | 2016

Weakened magnetic braking as the origin of anomalously rapid rotation in old field stars

Jennifer L. van Saders; T. Ceillier; T. S. Metcalfe; Victor Silva Aguirre; Marc H. Pinsonneault; R. A. García; S. Mathur; G. R. Davies

A knowledge of stellar ages is crucial for our understanding of many astrophysical phenomena, and yet ages can be difficult to determine. As they become older, stars lose mass and angular momentum, resulting in an observed slowdown in surface rotation. The technique of ‘gyrochronology’ uses the rotation period of a star to calculate its age. However, stars of known age must be used for calibration, and, until recently, the approach was untested for old stars (older than 1 gigayear, Gyr). Rotation periods are now known for stars in an open cluster of intermediate age (NGC 6819; 2.5 Gyr old), and for old field stars whose ages have been determined with asteroseismology. The data for the cluster agree with previous period–age relations, but these relations fail to describe the asteroseismic sample. Here we report stellar evolutionary modelling, and confirm the presence of unexpectedly rapid rotation in stars that are more evolved than the Sun. We demonstrate that models that incorporate dramatically weakened magnetic braking for old stars can—unlike existing models—reproduce both the asteroseismic and the cluster data. Our findings might suggest a fundamental change in the nature of ageing stellar dynamos, with the Sun being close to the critical transition to much weaker magnetized winds. This weakened braking limits the diagnostic power of gyrochronology for those stars that are more than halfway through their main-sequence lifetimes.


The Astronomical Journal | 2017

The Apache Point Observatory Galactic Evolution Experiment (APOGEE)

Steven R. Majewski; Ricardo P. Schiavon; Peter M. Frinchaboy; Carlos Allende Prieto; Robert H. Barkhouser; Dmitry Bizyaev; Basil Blank; Sophia Brunner; Adam Burton; R. Carrera; S. Drew Chojnowski; Katia Cunha; Courtney R. Epstein; Greg Fitzgerald; Ana G. Pérez; Frederick R. Hearty; C. Henderson; Jon A. Holtzman; Jennifer A. Johnson; Charles R. Lam; James E. Lawler; Paul Maseman; Szabolcs Mészáros; Matthew J. Nelson; Duy Coung Nguyen; David L. Nidever; Marc H. Pinsonneault; Matthew Shetrone; Stephen A. Smee; Verne V. Smith

National Science Foundation [AST-1109178, AST-1616636]; Gemini Observatory; Spanish Ministry of Economy and Competitiveness [AYA-2011-27754]; NASA [NNX12AE17G]; Hungarian Academy of Sciences; Hungarian NKFI of the Hungarian National Research, Development and Innovation Office [K-119517]; Alfred P. Sloan Foundation; National Science Foundation; U.S. Department of Energy Office of Science


Monthly Notices of the Royal Astronomical Society | 2016

Red giant masses and ages derived from carbon and nitrogen abundances

Marie Martig; Morgan Fouesneau; Hans-Walter Rix; Melissa Ness; Szabolcs Mészáros; D. A. García-Hernández; Marc H. Pinsonneault; Aldo M. Serenelli; Victor Silva Aguirre; Olga Zamora

We show that the masses of red giant stars can be well predicted from their photospheric carbon and nitrogen abundances, in conjunction with their spectroscopic stellar labels log g, Teff, and [Fe/H]. This is qualitatively expected from mass-dependent post-main-sequence evolution. We here establish an empirical relation between these quantities by drawing on 1475 red giants with asteroseismic mass estimates from Kepler that also have spectroscopic labels from Apache Point Observatory Galactic Evolution Experiment (APOGEE) DR12. We assess the accuracy of our model, and find that it predicts stellar masses with fractional rms errors of about 14 per cent (typically 0.2 M⊙). From these masses, we derive ages with rms errors of 40 per cent. This empirical model allows us for the first time to make age determinations (in the range 1–13 Gyr) for vast numbers of giant stars across the Galaxy. We apply our model to ∼52 000 stars in APOGEE DR12, for which no direct mass and age information was previously available. We find that these estimates highlight the vertical age structure of the Milky Way disc, and that the relation of age with [α/M] and metallicity is broadly consistent with established expectations based on detailed studies of the solar neighbourhood.


The Astrophysical Journal | 2010

Detection of Solar-like Oscillations from Kepler Photometry of the Open Cluster NGC 6819

D. Stello; Sarbani Basu; H. Bruntt; Benoit Mosser; Ian R. Stevens; Timothy M. Brown; Jørgen Christensen-Dalsgaard; Ronald L. Gilliland; Hans Kjeldsen; T. Arentoft; J. Ballot; C. Barban; Timothy R. Bedding; W. J. Chaplin; Y. Elsworth; R. A. García; M. J. Goupil; S. Hekker; Daniel Huber; S. Mathur; Soren Meibom; Vinothini Sangaralingam; Charles S. Baldner; K. Belkacem; Katia Biazzo; K. Brogaard; J. C. Suárez; F. D'Antona; Pierre Demarque; Lisa Esch

Asteroseismology of stars in clusters has been a long-sought goal because the assumption of a common age, distance, and initial chemical composition allows strong tests of the theory of stellar evolution. We report results from the first 34 days of science data from the Kepler Mission for the open cluster NGC 6819--one of the four clusters in the field of view. We obtain the first clear detections of solar-like oscillations in the cluster red giants and are able to measure the large frequency separation, Δν, and the frequency of maximum oscillation power, νmax. We find that the asteroseismic parameters allow us to test cluster membership of the stars, and even with the limited seismic data in hand, we can already identify four possible non-members despite their having a better than 80% membership probability from radial velocity measurements. We are also able to determine the oscillation amplitudes for stars that span about 2 orders of magnitude in luminosity and find good agreement with the prediction that oscillation amplitudes scale as the luminosity to the power of 0.7. These early results demonstrate the unique potential of asteroseismology of the stellar clusters observed by Kepler.


The Astrophysical Journal | 2017

Standing on the Shoulders of Dwarfs: the Kepler Asteroseismic LEGACY Sample. II. Radii, Masses, and Ages

Victor Silva Aguirre; Mikkel N. Lund; H. M. Antia; Warrick H. Ball; Sarbani Basu; Jørgen Christensen-Dalsgaard; Yveline Lebreton; D. R. Reese; Kuldeep Verma; Luca Casagrande; A. B. Justesen; Jakob Rørsted Mosumgaard; W. J. Chaplin; Timothy R. Bedding; G. R. Davies; R. Handberg; G. Houdek; Daniel Huber; Hans Kjeldsen; David W. Latham; T. R. White; H. R. Coelho; A. Miglio; Ben Rendle

We use asteroseismic data from the Kepler satellite to determine fundamental stellar properties of the 66 main-sequence targets observed for at least one full year by the mission. We distributed tens of individual oscillation frequencies extracted from the time series of each star among seven modelling teams who applied different methods to determine radii, masses, and ages for all stars in the sample. Comparisons among the different results reveal a good level of agreement in all stellar properties, which is remarkable considering the variety of codes, input physics and analysis methods employed by the different teams. Average uncertainties are of the order of ~2% in radius, ~4% in mass, and 10% in age, making this the best-characterised sample of main-sequence stars available to date. We test the accuracy of the determined stellar properties by comparing them to the Sun, angular diameter measurements, Gaia parallaxes, and binary evolution, finding excellent agreement in all cases and further confirming the robustness of asteroseismically-determined physical parameters of stars when individual frequencies of oscillation are available. Baptised as the Kepler dwarfs LEGACY sample, these stars are the solar-like oscillators with the best asteroseismic properties available for at least another decade. All data used in this analysis and the resulting stellar parameters are made publicly available for the community.


The Astrophysical Journal | 2015

OSCILLATING RED GIANTS OBSERVED DURING CAMPAIGN 1 OF THE KEPLER K2 MISSION: NEW PROSPECTS FOR GALACTIC ARCHAEOLOGY

D. Stello; Daniel Huber; Sanjib Sharma; Jennifer A. Johnson; Mikkel N. Lund; R. Handberg; Derek L. Buzasi; Victor Silva Aguirre; W. J. Chaplin; A. Miglio; Marc H. Pinsonneault; Sarbani Basu; Timothy R. Bedding; Joss Bland-Hawthorn; Luca Casagrande; G. R. Davies; Y. Elsworth; R. A. García; S. Mathur; Maria Pia di Mauro; Benoit Mosser; Donald P. Schneider; Aldo M. Serenelli; M. Valentini

NASA’s re-purposed Kepler mission ‐ dubbed K2 ‐ has brought new scientific opportunitie s that were not anticipated for the original Kepler mission. One science goal that makes optimal use of K2’s capa bilities, in particular its 360-degree ecliptic field of view, is galacti c archaeology ‐ the study of the evolution of the Galaxy from the fossil stellar record. The thrust of this research i s to exploit high-precision, time-resolved photometry from K2 in order to detect oscillations in red giant stars. Th is asteroseismic information can provide estimates of stellar radius (hence distance), mass and age of vast numbers of stars across the Galaxy. Here we present the initial analysis of a subset of red giants, observed towards the North Galactic Gap, during the mission’s first full science campaign. We investigate the feasibility of us ing K2 data for detecting oscillations in red giants that span a range in apparent magnitude and evolutionary state (hence intrinsic luminosity). We demonstrate that oscillations are detectable for essentially all cool g iants within the logg range � 1.9‐3.2. Our detection is complete down to Kp � 14.5, which results in a seismic sample with little or no detectio n bias. This sample is ideally suited to stellar population studies that seek to investigate potential shortcomings of contemporary Galaxy models. Subject headings:stars: fundamental parameters — stars: oscillations — stars: interiors


The Astrophysical Journal | 2014

Testing the Asteroseismic Mass Scale Using Metal-poor Stars Characterized with APOGEE and Kepler

Courtney R. Epstein; Y. Elsworth; Jennifer A. Johnson; Matthew Shetrone; Benoit Mosser; S. Hekker; Jamie Tayar; Paul Harding; Marc H. Pinsonneault; Victor Silva Aguirre; Sarbani Basu; Timothy C. Beers; Dmitry Bizyaev; Timothy R. Bedding; W. J. Chaplin; Peter M. Frinchaboy; R. A. García; Ana G. Pérez; Frederick R. Hearty; Daniel Huber; Inese I. Ivans; Steven R. Majewski; S. Mathur; David L. Nidever; Aldo M. Serenelli; Ricardo P. Schiavon; Donald P. Schneider; Ralph Schönrich; Jennifer S. Sobeck; Keivan G. Stassun

Fundamental stellar properties, such as mass, radius, and age, can be inferred using asteroseismology. Cool stars with convective envelopes have turbulent motions that can stochastically drive and damp pulsations. The properties of the oscillation frequency power spectrum can be tied to mass and radius through solar-scaled asteroseismic relations. Stellar properties derived using these scaling relations need verification over a range of metallicities. Because the age and mass of halo stars are well-constrained by astrophysical priors, they provide an independent, empirical check on asteroseismic mass estimates in the low-metallicity regime. We identify nine metal-poor red giants (including six stars that are kinematically associated with the halo) from a sample observed by both the Kepler space telescope and the Sloan Digital Sky Survey-III APOGEE spectroscopic survey. We compare masses inferred using asteroseismology to those expected for halo and thick-disk stars. Although our sample is small, standard scaling relations, combined with asteroseismic parameters from the APOKASC Catalog, produce masses that are systematically higher ( =0.17 ± 0.05 M ☉) than astrophysical expectations. The magnitude of the mass discrepancy is reduced by known theoretical corrections to the measured large frequency separation scaling relationship. Using alternative methods for measuring asteroseismic parameters induces systematic shifts at the 0.04 M ☉ level. We also compare published asteroseismic analyses with scaling relationship masses to examine the impact of using the frequency of maximum power as a constraint. Upcoming APOKASC observations will provide a larger sample of ~100 metal-poor stars, important for detailed asteroseismic characterization of Galactic stellar populations.

Collaboration


Dive into the Victor Silva Aguirre's collaboration.

Top Co-Authors

Avatar

W. J. Chaplin

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Y. Elsworth

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. A. García

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge