Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Victor W. Hsu is active.

Publication


Featured researches published by Victor W. Hsu.


Scientific Reports | 2017

Ror2 signaling regulates Golgi structure and transport through IFT20 for tumor invasiveness

Michiru Nishita; Seung-Yeol Park; Tadashi Nishio; Koki Kamizaki; ZhiChao Wang; Kota Tamada; Toru Takumi; Ryuju Hashimoto; Hiroki Otani; Gregory J. Pazour; Victor W. Hsu; Yasuhiro Minami

Signaling through the Ror2 receptor tyrosine kinase promotes invadopodia formation for tumor invasion. Here, we identify intraflagellar transport 20 (IFT20) as a new target of this signaling in tumors that lack primary cilia, and find that IFT20 mediates the ability of Ror2 signaling to induce the invasiveness of these tumors. We also find that IFT20 regulates the nucleation of Golgi-derived microtubules by affecting the GM130-AKAP450 complex, which promotes Golgi ribbon formation in achieving polarized secretion for cell migration and invasion. Furthermore, IFT20 promotes the efficiency of transport through the Golgi complex. These findings shed new insights into how Ror2 signaling promotes tumor invasiveness, and also advance the understanding of how Golgi structure and transport can be regulated.


Traffic | 2004

Stimulation-Dependent Recycling of Integrin β1 Regulated by ARF6 and Rab11

Aimee M. Powelka; Jianlan Sun; Jian Li; Minggeng Gao; Leslie M. Shaw; A. Sonnenberg; Victor W. Hsu

In comparison to the internalization pathways of endocytosis, the recycling pathways are less understood. Even less defined is the process of regulated recycling, as few examples exist and their underlying mechanisms remain to be clarified. In this study, we examine the endocytic recycling of integrin β1, a process that has been suggested to play an important role during cell motility by mediating the redistribution of integrins to the migrating front. External stimulation regulates the endocytic itinerary of β1, mainly at an internal compartment that is likely to be a subset of the recycling endosomes. This stimulation‐dependent recycling is regulated by ARF6 and Rab11, and also requires the actin cytoskeleton in an ARF6‐dependent manner. Consistent with these observations being relevant for cell motility, mutant forms of ARF6 that affect either actin rearrangement or recycling inhibit the motility of a breast cancer cell line.


Immunity | 1999

Separate Pathways for Antigen Presentation by CD1 Molecules

Masahiko Sugita; Ethan P. Grant; Elly van Donselaar; Victor W. Hsu; Rick A. Rogers; Peter J. Peters; Michael B. Brenner

The ability to sample relevant intracellular compartments is necessary for effective antigen presentation. To detect peptide antigens, MHC class I and II molecules differentially sample cytosolic and endosomal compartments. CD1 constitutes another lineage of lipid antigen-presenting molecules. We show that CD1b traffics deeply into late endosomal compartments, while CD1a is excluded from these compartments and instead traffics independently in the recycling pathway of the early endocytic system. Further, CD1b but not CD1a antigen presentation is dependent upon vesicular acidification. Since lipids and various bacteria are known to traffic differentially, either penetrating deeply into the endocytic system or following the route of recycling endosomes, these findings elucidate efficient monitoring of distinct components of the endocytic compartment by CD1 lipid antigen-presenting molecules.


Journal of Cell Biology | 2002

ARFGAP1 promotes the formation of COPI vesicles, suggesting function as a component of the coat

Jia-Shu Yang; Stella Y. Lee; Minggeng Gao; Sylvain G. Bourgoin; Paul A. Randazzo; Richard T. Premont; Victor W. Hsu

The role of GTPase-activating protein (GAP) that deactivates ADP-ribosylation factor 1 (ARF1) during the formation of coat protein I (COPI) vesicles has been unclear. GAP is originally thought to antagonize vesicle formation by triggering uncoating, but later studies suggest that GAP promotes cargo sorting, a process that occurs during vesicle formation. Recent models have attempted to reconcile these seemingly contradictory roles by suggesting that cargo proteins suppress GAP activity during vesicle formation, but whether GAP truly antagonizes coat recruitment in this process has not been assessed directly. We have reconstituted the formation of COPI vesicles by incubating Golgi membrane with purified soluble components, and find that ARFGAP1 in the presence of GTP promotes vesicle formation and cargo sorting. Moreover, the presence of GTPγS not only blocks vesicle uncoating but also vesicle formation by preventing the proper recruitment of GAP to nascent vesicles. Elucidating how GAP functions in vesicle formation, we find that the level of GAP on the reconstituted vesicles is at least as abundant as COPI and that GAP binds directly to the dilysine motif of cargo proteins. Collectively, these findings suggest that ARFGAP1 promotes vesicle formation by functioning as a component of the COPI coat.


The EMBO Journal | 1997

The KDEL receptor, ERD2, regulates intracellular traffic by recruiting a GTPase-activating protein for ARF1.

Tomohiko Aoe; Edna Cukierman; Agnes Lee; Dan Cassel; Peter J. Peters; Victor W. Hsu

The small GTPase ADP‐ribosylation factor 1 (ARF1) is a key regulator of intracellular membrane traffic. Regulators of ARF1, its GTPase‐activating protein (GAP) and its guanine nucleotide exchange factor have been identified recently. However, it remains uncertain whether these regulators drive the GTPase cycle of ARF1 autonomously or whether their activities can be regulated by other proteins. Here, we demonstrate that the intracellular KDEL receptor, ERD2, self‐oligomerizes and interacts with ARF1 GAP, and thereby regulates the recruitment of cytosolic ARF1 GAP to membranes. Because ERD2 overexpression enhances the recruitment of GAP to membranes and results in a phenotype that reflects ARF1 inactivation, our findings suggest that ERD2 regulates ARF1 GAP, and thus regulates ARF1‐mediated transport.


Nature Cell Biology | 2005

CtBP3/BARS drives membrane fission in dynamin-independent transport pathways

Matteo Bonazzi; Stefania Spanò; Gabriele Turacchio; Claudia Cericola; Carmen Valente; Antonino Colanzi; Hee Seok Kweon; Victor W. Hsu; Elena V. Polishchuck; Roman S. Polishchuck; Michele Sallese; Teodoro Pulvirenti; Daniela Corda; Alberto Luini

Membrane fission is a fundamental step in membrane transport. So far, the only fission protein machinery that has been implicated in in vivo transport involves dynamin, and functions in several, but not all, transport pathways. Thus, other fission machineries may exist. Here, we report that carboxy-terminal binding protein 3/brefeldin A-ribosylated substrate (CtBP3/BARS) controls fission in basolateral transport from the Golgi to the plasma membrane and in fluid-phase endocytosis, whereas dynamin is not involved in these steps. Conversely, CtBP3/BARS protein is inactive in apical transport to the plasma membrane and in receptor-mediated endocytosis, both steps being controlled by dynamin. This indicates that CtBP3/BARS controls membrane fission in endocytic and exocytic transport pathways, distinct from those that require dynamin.


Journal of Biological Chemistry | 2000

The Evolutionarily Conserved N-terminal Region of Cbl Is Sufficient to Enhance Down-regulation of the Epidermal Growth Factor Receptor*

Nancy L. Lill; Patrice Douillard; Rana A. Awwad; Satoshi Ota; Mark L. Lupher; Sachiko Miyake; Nichole Meissner-Lula; Victor W. Hsu; Hamid Band

The mammalian proto-oncoprotein Cbl and its homologues in Caenorhabditis elegans andDrosophila are evolutionarily conserved negative regulators of the epidermal growth factor receptor (EGF-R). Overexpression of wild-type Cbl enhances down-regulation of activated EGF-R from the cell surface. We report that the Cbl tyrosine kinase-binding (TKB) domain is essential for this activity. Whereas wild-type Cbl enhanced ligand-dependent EGF-R ubiquitination, down-regulation from the cell surface, accumulation in intracellular vesicles, and degradation, a Cbl TKB domain-inactivated mutant (G306E) did not. Furthermore, the transforming truncation mutant Cbl-N (residues 1–357), comprising only the Cbl TKB domain, functioned as a dominant negative protein. It colocalized with EGF-R in intracellular vesicular structures, yet it suppressed down-regulation of EGF-R from the surface of cells expressing endogenous wild-type Cbl. Therefore, Cbl-mediated down-regulation of EGF-R requires the integrity of both the N-terminal TKB domain and additional C-terminal sequences. A Cbl truncation mutant comprising amino acids 1–440 functioned like wild-type Cbl in down-regulation assays. This mutant includes the evolutionarily conserved TKB and RING finger domains but lacks the less conserved C-terminal sequences. We conclude that the evolutionarily conserved N terminus of Cbl is sufficient to effect enhancement of EGF-R ubiquitination and down-regulation from the cell surface.


Nature Cell Biology | 2008

A traffic-activated Golgi-based signalling circuit coordinates the secretory pathway.

Teodoro Pulvirenti; Monica Giannotta; Mariagrazia Capestrano; Mirco Capitani; Antonio Pisanu; Roman S. Polishchuk; Enrica San Pietro; Galina V. Beznoussenko; Alexander A. Mironov; Gabriele Turacchio; Victor W. Hsu; Michele Sallese; Alberto Luini

As with other complex cellular functions, intracellular membrane transport involves the coordinated engagement of a series of organelles and machineries; however, the molecular basis of this coordination is unknown. Here we describe a Golgi-based signalling system that is activated by traffic and is involved in monitoring and balancing trafficking rates into and out of the Golgi complex. We provide evidence that the traffic signal is due to protein chaperones that leave the endoplasmic reticulum and reach the Golgi complex where they bind to the KDEL receptor. This initiates a signalling reaction that includes the activation of a Golgi pool of Src kinases and a phosphorylation cascade that in turn activates intra-Golgi trafficking, thereby maintaining the dynamic equilibrium of the Golgi complex. The concepts emerging from this study should help to understand the control circuits that coordinate high-order cellular functions.


Nature Cell Biology | 2008

A role for phosphatidic acid in COPI vesicle fission yields insights into Golgi maintenance

Jia Shu Yang; Helge Gad; Stella Y. Lee; Alexander A. Mironov; Leiliang Zhang; Galina V. Beznoussenko; Carmen Valente; Gabriele Turacchio; Akua N. Bonsra; Guangwei Du; Gianluca Baldanzi; Andrea Graziani; Sylvain G. Bourgoin; Michael A. Frohman; Alberto Luini; Victor W. Hsu

Proteins essential for vesicle formation by the Coat Protein I (COPI) complex are being identified, but less is known about the role of specific lipids. Brefeldin-A ADP-ribosylated substrate (BARS) functions in the fission step of COPI vesicle formation. Here, we show that BARS induces membrane curvature in cooperation with phosphatidic acid. This finding has allowed us to further delineate COPI vesicle fission into two sub-stages: 1) an earlier stage of bud-neck constriction, in which BARS and other COPI components are required, and 2) a later stage of bud-neck scission, in which phosphatidic acid generated by phospholipase D2 (PLD2) is also required. Moreover, in contrast to the disruption of the Golgi seen on perturbing the core COPI components (such as coatomer), inhibition of PLD2 causes milder disruptions, suggesting that such COPI components have additional roles in maintaining Golgi structure other than through COPI vesicle formation.


Journal of Cell Biology | 2005

ARFGAP1 plays a central role in coupling COPI cargo sorting with vesicle formation

Stella Y. Lee; Jia-Shu Yang; Wanjin Hong; Richard T. Premont; Victor W. Hsu

Examining how key components of coat protein I (COPI) transport participate in cargo sorting, we find that, instead of ADP ribosylation factor 1 (ARF1), its GTPase-activating protein (GAP) plays a direct role in promoting the binding of cargo proteins by coatomer (the core COPI complex). Activated ARF1 binds selectively to SNARE cargo proteins, with this binding likely to represent at least a mechanism by which activated ARF1 is stabilized on Golgi membrane to propagate its effector functions. We also find that the GAP catalytic activity plays a critical role in the formation of COPI vesicles from Golgi membrane, in contrast to the prevailing view that this activity antagonizes vesicle formation. Together, these findings indicate that GAP plays a central role in coupling cargo sorting and vesicle formation, with implications for simplifying models to describe how these two processes are coupled during COPI transport.

Collaboration


Dive into the Victor W. Hsu's collaboration.

Top Co-Authors

Avatar

Jia-Shu Yang

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alberto Luini

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael B. Brenner

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard D. Klausner

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge