Victoria A. Shcherbakova
Russian Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Victoria A. Shcherbakova.
Chemosphere | 1999
Victoria A. Shcherbakova; Kestutis S. Laurinavichius; Vasily K. Akimenko
Surfactants used in household and various industries, are rather toxic; therefore, the accumulation of these compounds in the environment through wastewaters has challenged the problem of their biodegradation. In this research, an attempt was made to assess the toxic effect of various surfactants and the likely products of their biodegradation on the acetoclastic methanogens of an anaerobic microbial community. Among the substances investigated, cationic surfactants were found to be most toxic to methanogens: 154 mg/l alkamon DS and 345 mg/l catamin AB induced a 50% inhibition of methanogenesis. Toxicity studies of some aromatic and cyclic compounds, as the probable products of biodegradation of alkylbenzene sulfonate surfactants, showed that methanogenesis in the microbial community under study are rather tolerant to high concentrations of these compounds.
FEMS Microbiology Ecology | 2016
Victoria A. Shcherbakova; Yoshitaka Yoshimura; Yana Ryzhmanova; Yukihiro Taguchi; Takahiro Segawa; Victoria Oshurkova; Elizaveta Rivkina
In the present study, we used culture-independent methods to investigate the diversity of methanogenic archaea and their distribution in five permafrost samples collected from a borehole in the Kolyma River Lowland (north-east of Russia). Total DNA was extracted from methane-containing permafrost samples of different age and amplified by PCR. The resulting DNA fragments were cloned. Phylogenetic analysis of the sequences showed the presence of archaea in all studied samples; 60%-95% of sequences belonged to the Euryarchaeota. Methanogenic archaea were novel representatives of Methanosarcinales, Methanomicrobiales, Methanobacteriales and Methanocellales orders. Bathyarchaeota (Miscellaneous Crenarchaeota Group) representatives were found among nonmethanogenic archaea in all the samples studied. The Thaumarchaeota representatives were not found in the upper sample, whereas Woesearchaeota (formerly DHVEG-6) were found in the three deepest samples. Unexpectedly, the greatest diversity of archaea was observed at a depth of 22.3 m, probably due to the availability of the labile organic carbon and/or due to the migration of the microbial cells during the freezing front towards the bottom.
International Journal of Systematic and Evolutionary Microbiology | 2013
Andrei N. Shkoporov; Ekaterina V. Khokhlova; Andrei V. Chaplin; Lyudmila I. Kafarskaia; Alexei A. Nikolin; Vladimir Y. Polyakov; Victoria A. Shcherbakova; Zoya A. Chernaia; Boris A. Efimov
A novel obligately anaerobic, non-spore-forming, rod-shaped, non-motile Gram-reaction-negative bacterium was isolated from infant faeces. The strain, designated NSB1(T), was able to grow on rich media at 30-37 °C, in the presence of up to 2 % (w/v) Oxgall and 2 % (w/v) NaCl. Cells of strain NSB1(T) produced catalase, but not urease and indole. Aesculin was not hydrolysed. The strain was able to utilize d-glucose, lactose, maltose, mannose and raffinose as electron donors. When grown on d-glucose, the main metabolic end products were propionic and acetic acids, with a minor product being succinic acid. The major cellular fatty acids, iso-C15 : 0 and anteiso-C15 : 0, were present at a 1 : 1 molar ratio. The major menaquinone was MK-11. The DNA G+C content was found to be 38.5 mol%. According to 16S rRNA gene sequence analysis strain NSB1(T) is a member of the family Porphyromonadaceae, phylum Bacteroidetes. The closest relatives of the strain were Barnesiella viscericola (88.2 % identity) and Barnesiella intestinihominis (87.4 % identity). On the basis of phenotypic and genotypic properties of strain NSB1(T) we conclude that this strain represent a novel species in a new genus within the family of Porphyromonadaceae for which the name Coprobacter fastidiosus gen. nov., sp. nov. is proposed. The type strain of the species is NSB1(T) ( = DSM 26242(T), = VKM B-2743(T)).
Journal of Natural Products | 2012
Anna N. Kondakova; Kseniya A. Novototskaya-Vlasova; Nikolay P. Arbatsky; Marina S. Drutskaya; Victoria A. Shcherbakova; Alexander S. Shashkov; David A. Gilichinsky; Sergei A. Nedospasov; Yuriy A. Knirel
A novel constituent of bacterial polysaccharides, 2,3,4-triacetamido-2,3,4-trideoxy-L-arabinose, was found in the O-specific polysaccharide from the lipopolysaccharide of Psychrobacter cryohalolentis K5(T) and identified by 1D and 2D (1)H and (13)C NMR studies of the polysaccharide and a disaccharide obtained by solvolysis of the polysaccharide with triflic acid. The following structure of the branched polysaccharide was established by sugar analysis, triflic acid solvolysis, Smith degradation, and 2D NMR spectroscopy.
Carbohydrate Research | 2012
Anna N. Kondakova; Kseniya A. Novototskaya-Vlasova; Marina S. Drutskaya; Sof’ya N. Senchenkova; Victoria A. Shcherbakova; Alexander S. Shashkov; David A. Gilichinsky; Sergei A. Nedospasov; Yuriy A. Knirel
Psychrotrophic bacteria of the genus Psychrobacter have not been studied in respect to lipopolysaccharide structure. In this work, we determined the structure of the O-specific polysaccharide of the lipopolysaccharide of Psychrobacter muricolla 2pS(T) isolated from overcooled (-9°C) water brines within permafrost. The polysaccharide was found to be acidic due to the presence of an amide of 2-acetamido-2-deoxy-l-guluronic acid with glycine (l-GulNAcA6Gly), which has not been hitherto found in nature. The following structure of the disaccharide repeating unit of the polysaccharide was established using composition analysis along with 1D and 2D (1)H and (13)C NMR spectroscopy: →4)-α-l-GulpNAcA6Gly-(1→3)-β-d-GlcpNAc-(1→
Genome Announcements | 2016
Joy Buongiorno; Jordan T. Bird; Kirill Krivushin; Victoria Oshurkova; Victoria A. Shcherbakova; Elizaveta Rivkina; Karen G. Lloyd; Tatiana A. Vishnivetskaya
ABSTRACT A genomic reconstruction belonging to the genus Methanosarcina was assembled from metagenomic data from a methane-producing enrichment of Antarctic permafrost. This is the first methanogen genome reported from permafrost of the Dry Valleys and can help shed light on future climate-affected methane dynamics.
Carbohydrate Research | 2012
Anna N. Kondakova; Kseniya A. Novototskaya-Vlasova; Alexander S. Shashkov; Marina S. Drutskaya; Sof’ya N. Senchenkova; Victoria A. Shcherbakova; David A. Gilichinsky; Sergei A. Nedospasov; Yuriy A. Knirel
An acidic polysaccharide was obtained from Psychrobacter maritimus 3pS isolated from a Siberian cryopeg sample (Kolyma lowland). The following structure of the tetrasaccharide repeating unit of the polysaccharide was established by sugar analysis along with (1)H and (13)C NMR spectroscopy: →2)-α-L-Rhap-(1→4)-α-D-GalpNAcA-(1→3)-α-D-QuipNAc4NHb-(1→3)-β-D-QuipNAc4NHb-(1→ where D-GalNAcA indicates 2-acetamido-2-deoxy-D-galacturonic acid and d-QuiNAc4NHb indicates 2-acetamido-2,4,6-trideoxy-4-[(S)-3-hydroxybutanoyl]amino-D-glucose.
FEMS Microbiology Ecology | 2018
Tatiana A. Vishnivetskaya; Joy Buongiorno; Jordan T. Bird; Kirill Krivushin; E. V. Spirina; Victoria Oshurkova; Victoria A. Shcherbakova; Gary S. Wilson; Karen G. Lloyd; Elizaveta Rivkina
Polar permafrost is at the forefront of climate change, yet only a few studies have enriched the native methane-producing microbes that might provide positive feedbacks to climate change. Samples Ant1 and Ant2, collected in Antarctic Miers Valley from permafrost sediments, with and without biogenic methane, respectively, were evaluated for methanogenic activity and presence of methanogens. After a one-year incubation of both samples under anaerobic conditions, methane production was observed only at room temperature in microcosm Ant1 with CO2/H2 (20/80) as carbon and energy sources and was monitored during the subsequent 10 years. The concentration of methane in the headspace of microcosm Ant1 changed from 0.8% to a maximum of 45%. Archaeal 16S rRNA genes from microcosm Ant1 were related to psychrotolerant Methanosarcina lacustris. Repeated efforts at achieving a pure culture of this organism were unsuccessful. Metagenomic reads obtained for the methane-producing microcosm Ant1 were assembled and resulted in a 99.84% complete genome affiliated with the genus Methanosarcina. The metagenome assembled genome contained cold-adapted enzymes and pathways suggesting that the novel uncultured Methanosarcina sp. Ant1 is adapted to sub-freezing conditions in permafrost. This is the first methanogen genome reported from the 15 000 years old permafrost of the Antarctic Dry Valleys.
International Journal of Systematic and Evolutionary Microbiology | 2016
Andrei N. Shkoporov; Andrei V. Chaplin; Victoria A. Shcherbakova; Natalia E. Suzina; Lyudmila I. Kafarskaia; Vladimir K. Bozhenko; Boris A. Efimov
Two novel strains of Gram-stain-negative, rod-shaped, obligately anaerobic, non-spore-forming, non-motile bacteria were isolated from the faeces of healthy human subjects. The strains, designated as 585-1T and 668, were characterized by mesophilic fermentative metabolism, production of d-lactic acid, succinic acid and acetic acid as end products of d-glucose fermentation, prevalence of C18 : 1ω9, C18 : 1ω9 aldehyde, C16 : 0 and C16 : 1ω7c fatty acids, presence of glycine, glutamic acid, lysine, alanine and aspartic acid in the petidoglycan peptide moiety and lack of respiratory quinones. Whole genome sequencing revealed the DNA G+C content was 56.4-56.6 mol%. The complete 16S rRNA gene sequences of the two strains shared 91.7/91.6 % similarity with Anaerofilum pentosovorans FaeT, 91.3/91.2 % with Gemmiger formicilis ATCC 27749T and 88.9/88.8 % with Faecalibacterium prausnitzii ATCC 27768T. On the basis of chemotaxonomic and genomic properties it was concluded that the strains represent a novel species in a new genus within the family Ruminococcaceae, for which the name Ruthenibacterium lactatiformans gen. nov., sp. nov. is proposed. The type strain of Ruthenibacterium lactatiformans is 585-1T (=DSM 100348T=VKM B-2901T).
International Journal of Systematic and Evolutionary Microbiology | 2018
Boris A. Efimov; Andrei V. Chaplin; Victoria A. Shcherbakova; Natalia E. Suzina; Irina V. Podoprigora; Andrei N. Shkoporov
A strain of obligately anaerobic, Gram-stain-negative rods was isolated from human faeces and characterized both phenotypically and genotypically. Phylogenetic analysis based on 16S rRNA gene and whole-genome sequences revealed the strain to represent a member of the genus Prevotella, distant from the species with validly published names, with the closest relationship to Prevotella oryzae. The strain was moderately saccharolytic and proteolytic. The predominant menaquinones were MK-13 and MK-12. The major cellular long-chain fatty acids were anteiso-C15 : 0 and iso-C15 : 0. The genomic DNA G+C content was 45.7 mol%. On the basis of chemotaxonomic and genotypic properties, it was concluded that the strain represent a novel species within the genus Prevotella, for which the name Prevotellarara sp. nov. is proposed. The type strain of Prevotellarara is 109T (=VKM B-2992T=DSM 105141T).