Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Victoria E. Prince is active.

Publication


Featured researches published by Victoria E. Prince.


Nature Reviews Genetics | 2002

Splitting pairs: the diverging fates of duplicated genes

Victoria E. Prince; F. Bryan Pickett

Many genes are members of large families that have arisen during evolution through gene duplication events. Our increasing understanding of gene organization at the scale of whole genomes is revealing further evidence for the extensive retention of genes that arise during duplication events of various types. Duplication is thought to be an important means of providing a substrate on which evolution can work. An understanding of gene duplication and its resolution is crucial for revealing mechanisms of genetic redundancy. Here, we consider both the theoretical framework and the experimental evidence to explain the preservation of duplicated genes.


Current Biology | 2002

Retinoic Acid Signaling Is Required for a Critical Early Step in Zebrafish Pancreatic Development

David Stafford; Victoria E. Prince

The mechanisms that subdivide the endoderm into the discrete primordia that give rise to organs such as the pancreas and liver are not well understood. However, it is known that retinoic acid (RA) signaling is critical for regionalization of the vertebrate embryo: when RA signaling is either prevented or augmented, anteroposterior (AP) patterning of the CNS and mesoderm is altered and major developmental defects occur. We have investigated the role of RA signaling in regionalization of the zebrafish endoderm. Using a mutant that prevents RA synthesis and an antagonist of the RA receptors, we show that specification of both the pancreas and liver requires RA signaling. By contrast, RA signaling is not required for the formation of the endodermal germ layer or for differentiation of other endodermal organs. Timed antagonist and RA treatments show that the RA-dependent step in pancreatic specification occurs at the end of gastrulation, significantly earlier than the expression of known markers of pancreatic progenitors. In addition to being required for pancreatic specification, RA has the capacity to transfate anterior endoderm to a pancreatic fate.


Proceedings of the Royal Society B - Biological Sciences , 274 (1609) pp. 489-498. (2007) | 2007

A new time-scale for ray-finned fish evolution

Imogen A. Hurley; Rachel Lockridge Mueller; Katherine A. Dunn; Eric J. Schmidt; Matt Friedman; Robert K. Ho; Victoria E. Prince; Ziheng Yang; Mark G. Thomas; Michael I. Coates

The Actinopterygii (ray-finned fishes) is the largest and most diverse vertebrate group, but little is agreed about the timing of its early evolution. Estimates using mitochondrial genomic data suggest that the major actinopterygian clades are much older than divergence dates implied by fossils. Here, the timing of the evolutionary origins of these clades is reinvestigated using morphological, and nuclear and mitochondrial genetic data. Results indicate that existing fossil-based estimates of the age of the crown-group Neopterygii, including the teleosts, Lepisosteus (gar) and Amia (bowfin), are at least 40 Myr too young. We present new palaeontological evidence that the neopterygian crown radiation is a Palaeozoic event, and demonstrate that conflicts between molecular and morphological data for the age of the Neopterygii result, in part, from missing fossil data. Although our molecular data also provide an older age estimate for the teleost crown, this range extension remains unsupported by the fossil evidence. Nuclear data from all relevant clades are used to demonstrate that the actinopterygian whole-genome duplication event is teleost-specific. While the date estimate of this event overlaps the probable range of the teleost stem group, a correlation between the genome duplication and the large-scale pattern of actinopterygian phylogeny remains elusive.


Developmental Dynamics | 2002

Constructing the hindbrain: Insights from the zebrafish

Cecilia B. Moens; Victoria E. Prince

The hindbrain is responsible for controlling essential functions such as respiration and heart beat that we literally do not think about most of the time. In addition, cranial nerves projecting from the hindbrain control muscles in the jaw, eye, and face, and receive sensory input from these same areas. In all vertebrates that have been studied, the hindbrain passes through a segmented phase shortly after the neural tube has formed, with a series of seven bulges—the rhombomeres—forming along the anterior‐posterior extent of the neural tube. Our current understanding of vertebrate hindbrain development comes from integrating data from several model systems. Work on the chick has helped us to understand the cell biology of the rhombomeres, whereas the power of mouse molecular genetics has allowed investigation of the molecular mechanisms underlying their development. This review focuses on the special insights that the zebrafish system has provided to our understanding of hindbrain development. As we will discuss, work in the zebrafish has elucidated inductive events that specify the presumptive hindbrain domain and has identified genes required for hindbrain segmentation and the specification of segment identities.


Development | 2006

Retinoids signal directly to zebrafish endoderm to specify insulin -expressing β-cells

David A. Stafford; Richard J. White; Mary D. Kinkel; Angela Linville; Thomas F. Schilling; Victoria E. Prince

During vertebrate development, the endodermal germ layer becomes regionalized along its anteroposterior axis to give rise to a variety of organs, including the pancreas. Genetic studies in zebrafish and mice have established that the signaling molecule retinoic acid (RA) plays a crucial role in endoderm patterning and promotes pancreas development. To identify how RA signals to pancreatic progenitors in the endoderm, we have developed a novel cell transplantation technique, using the ability of the SOX32 transcription factor to confer endodermal identity, to selectively target reagents to (or exclude them from) the endodermal germ layer of the zebrafish. We show that RA synthesized in the anterior paraxial mesoderm adjacent to the foregut is necessary for the development of insulin-expressingβ -cells. Conversely, RA receptor function is required in the foregut endoderm for insulin expression, but not in mesoderm or ectoderm. We further show that activation of RA signal transduction in endoderm alone is sufficient to induce insulin expression. Our results reveal that RA is an instructive signal from the mesoderm that directly induces precursors of the endocrine pancreas. These findings suggest that RA will have important applications in the quest to induce islets from stem cells for therapeutic uses.


Development Genes and Evolution | 2004

A conserved role for retinoid signaling in vertebrate pancreas development.

D. Stafford; A. Hornbruch; P. R. Mueller; Victoria E. Prince

Retinoic acid (RA) signaling plays critical roles in the regionalization of the central nervous system and mesoderm of all vertebrates that have been examined. However, to date, a role for RA in pancreas and liver development has only been demonstrated for the teleost zebrafish. Here, we demonstrate that RA signaling is required for development of the pancreas but not the liver in the amphibian Xenopus laevis and the avian quail. We disrupted RA signaling in Xenopus tadpoles, using both a pharmacological and a dominant-negative strategy. RA-deficient quail embryos were obtained from hens with a dietary deficiency in vitamin A. In both species we found that pancreas development was dependent on RA signaling. Furthermore, treatment of Xenopus tadpoles with exogenous RA led to an expansion of the pancreatic field. By contrast, liver development was not perturbed by manipulation of RA signaling. Taken together with our previous finding that RA signaling is necessary and sufficient for zebrafish pancreas development, these data support the hypothesis that a critical role for RA signaling in pancreas development is a conserved feature of the vertebrates.


BioEssays | 2009

On the diabetic menu: Zebrafish as a model for pancreas development and function

Mary D. Kinkel; Victoria E. Prince

Development of the vertebrate pancreas is a complex stepwise process comprising regionalization, cell differentiation, and morphogenesis. Studies in zebrafish are contributing to an emerging picture of pancreas development in which extrinsic signaling molecules influence intrinsic transcriptional programs to allow ultimate differentiation of specific pancreatic cell types. Zebrafish experiments have revealed roles for several signaling molecules in aspects of this process; for example our own work has shown that retinoic acid signals specify the pre‐pancreatic endoderm. Time‐lapse imaging of live zebrafish embryos has started to provide detailed information about early pancreas morphogenesis. In addition to modeling embryonic development, the zebrafish has recently been used as a model for pancreas regeneration studies. Here, we review the significant progress in these areas and consider the future potential of zebrafish as a diabetes research model.


Zebrafish | 2010

Blood Sugar Measurement in Zebrafish Reveals Dynamics of Glucose Homeostasis

Stefani C. Eames; Louis H. Philipson; Victoria E. Prince; Mary D. Kinkel

The adult zebrafish has the potential to become an important model for diabetes-related research. To realize this potential, small-scale methods for analyzing pancreas function are required. The measurement of blood glucose level is a commonly used method for assessing beta-cell function, but the small size of the zebrafish presents challenges both for collecting blood samples and for measuring glucose. We have developed methods for collecting microsamples of whole blood and plasma for the measurement of hematocrit and blood glucose. We demonstrate that two hand-held glucose meters designed for use by human diabetics return valid results with zebrafish blood. Additionally, we present methods for fasting and for performing postprandial glucose and intraperitoneal glucose tolerance tests. We find that the dynamics of zebrafish blood glucose homeostasis are consistent with patterns reported for other omnivorous teleost fish.


Journal of Visualized Experiments | 2010

Intraperitoneal Injection into Adult Zebrafish

Mary D. Kinkel; Stefani C. Eames; Louis H. Philipson; Victoria E. Prince

A convenient method for chemically treating zebrafish is to introduce the reagent into the tank water, where it will be taken up by the fish. However, this method makes it difficult to know how much reagent is absorbed or taken up per fish. Some experimental questions, particularly those related to metabolic studies, may be better addressed by delivering a defined quantity to each fish, based on weight. Here we present a method for intraperitoneal (IP) injection into adult zebrafish. Injection is into the abdominal cavity, posterior to the pelvic girdle. This procedure is adapted from veterinary methods used for larger fish. It is safe, as we have observed zero mortality. Additionally, we have seen bleeding at the injection site in only 5 out of 127 injections, and in each of those cases the bleeding was brief, lasting several seconds, and the quantity of blood lost was small. Success with this procedure requires gentle handling of the fish through several steps including fasting, weighing, anesthetizing, injection, and recovery. Precautions are required to minimize stress throughout the procedure. Our precautions include using a small injection volume and a 35G needle. We use Cortland salt solution as the vehicle, which is osmotically balanced for freshwater fish. Aeration of the gills is maintained during the injection procedure by first bringing the fish into a surgical plane of anesthesia, which allows slow operculum movements, and second, by holding the fish in a trough within a water-saturated sponge during the injection itself. We demonstrate the utility of IP injection by injecting glucose and monitoring the rise in blood glucose level and its subsequent return to normal. As stress is known to increase blood glucose in teleost fish, we compare blood glucose levels in vehicle-injected and non-injected adults and show that the procedure does not cause a significant rise in blood glucose.


Development Genes and Evolution | 1998

Hox gene expression reveals regionalization along the anteroposterior axis of the zebrafish notochord

Victoria E. Prince; Alivia L. Price; Robert K. Ho

Abstract The vertebrate Hox genes have been shown to confer regional identity along the anteroposterior axis of the developing embryo, especially within the central nervous system (CNS) and the paraxial mesoderm. The notochord has been shown to play vital roles in patterning adjacent tissues along both the dorsoventral and mediolateral axes. However, the notochord’s role in imparting anteroposterior information to adjacent structures is less well understood, especially as the notochord shows no morphological distinctions along the anteroposterior axis and is not generally described as a segmental or compartmentalized structure. Here we report that four zebrafish hox genes: hoxb1, hoxb5, hoxc6 and hoxc8 are regionally expressed along the anteroposterior extent of the developing notochord. Notochord expression for each gene is transient, but maintains a definite, gene-specific anterior limit throughout its duration. The hox gene expression in the zebrafish notochord is spatially colinear with those genes lying most 3’ in the hox clusters having the most anterior limits. The expression patterns of these hox cluster genes in the zebrafish are the most direct molecular evidence for a system of anteroposterior regionalization of the notochord in any vertebrate studied to date.

Collaboration


Dive into the Victoria E. Prince's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge