Victoria J. Hodge
University of York
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Victoria J. Hodge.
Artificial Intelligence Review | 2004
Victoria J. Hodge; Jim Austin
Outlier detection has been used for centuries to detect and, where appropriate, remove anomalous observations from data. Outliers arise due to mechanical faults, changes in system behaviour, fraudulent behaviour, human error, instrument error or simply through natural deviations in populations. Their detection can identify system faults and fraud before they escalate with potentially catastrophic consequences. It can identify errors and remove their contaminating effect on the data set and as such to purify the data for processing. The original outlier detection methods were arbitrary but now, principled and systematic techniques are used, drawn from the full gamut of Computer Science and Statistics. In this paper, we introduce a survey of contemporary techniques for outlier detection. We identify their respective motivations and distinguish their advantages and disadvantages in a comparative review.
IEEE Transactions on Intelligent Transportation Systems | 2015
Victoria J. Hodge; Simon O'Keefe; Michael Weeks; Anthony Moulds
In recent years, the range of sensing technologies has expanded rapidly, whereas sensor devices have become cheaper. This has led to a rapid expansion in condition monitoring of systems, structures, vehicles, and machinery using sensors. Key factors are the recent advances in networking technologies such as wireless communication and mobile ad hoc networking coupled with the technology to integrate devices. Wireless sensor networks (WSNs) can be used for monitoring the railway infrastructure such as bridges, rail tracks, track beds, and track equipment along with vehicle health monitoring such as chassis, bogies, wheels, and wagons. Condition monitoring reduces human inspection requirements through automated monitoring, reduces maintenance through detecting faults before they escalate, and improves safety and reliability. This is vital for the development, upgrading, and expansion of railway networks. This paper surveys these wireless sensors network technology for monitoring in the railway industry for analyzing systems, structures, vehicles, and machinery. This paper focuses on practical engineering solutions, principally, which sensor devices are used and what they are used for; and the identification of sensor configurations and network topologies. It identifies their respective motivations and distinguishes their advantages and disadvantages in a comparative review.
IEEE Transactions on Knowledge and Data Engineering | 2001
Victoria J. Hodge; Jim Austin
We propose a hierarchical clustering algorithm (TreeGCS) based upon the Growing Cell Structure (GCS) neural network of B. Fritzke (1993). Our algorithm refines and builds upon the GCS base, overcoming an inconsistency in the original GCS algorithm, where the network topology is susceptible to the ordering of the input vectors. Our algorithm is unsupervised, flexible, and dynamic and we have imposed no additional parameters on the underlying GCS algorithm. Our ultimate aim is a hierarchical clustering neural network that is both consistent and stable and identifies the innate hierarchical structure present in vector-based data. We demonstrate improved stability of the GCS foundation and evaluate our algorithm against the hierarchy generated by an ascendant hierarchical clustering dendogram. Our approach emulates the hierarchical clustering of the dendogram. It demonstrates the importance of the parameter settings for GCS and how they affect the stability of the clustering.
IEEE Transactions on Knowledge and Data Engineering | 2003
Victoria J. Hodge; Jim Austin
In this paper, we propose a simple, flexible, and efficient hybrid spell checking methodology based upon phonetic matching, supervised learning, and associative matching in the AURA neural system. We integrate Hamming Distance and n-gram algorithms that have high recall for typing errors and a phonetic spell-checking algorithm in a single novel architecture. Our approach is suitable for any spell checking application though aimed toward isolated word error correction, particularly spell checking user queries in a search engine. We use a novel scoring scheme to integrate the retrieved words from each spelling approach and calculate an overall score for each matched word. From the overall scores, we can rank the possible matches. We evaluate our approach against several benchmark spellchecking algorithms for recall accuracy. Our proposed hybrid methodology has the highest recall rate of the techniques evaluated. The method has a high recall rate and low-computational cost.
Neurocomputing | 2002
Victoria J. Hodge; Jim Austin
Abstract In this paper, we propose a hierarchical, lexical clustering neural network algorithm that automatically generates a thesaurus (synonym abstraction) using purely stochastic information derived from unstructured text corpora and requiring no prior word classifications. The lexical hierarchy overcomes the Vocabulary Problem by accommodating paraphrasing through using synonym clusters and overcomes Information Overload by focusing search within cohesive clusters. We describe existing word categorisation methodologies, identifying their respective strengths and weaknesses and evaluate our proposed approach against an existing neural approach using a benchmark statistical approach and a human generated thesaurus for comparison. We also evaluate our word context vector generation methodology against two similar approaches to investigate the effect of word vector dimensionality and the effect of the number of words in the context window on the quality of word clusters produced. We demonstrate the effectiveness of our approach and its superiority to existing techniques.
Knowledge and Information Systems | 2005
Victoria J. Hodge; Jim Austin
K-Nearest Neighbour (k-NN) is a widely used technique for classifying and clustering data. K-NN is effective but is often criticised for its polynomial run-time growth as k-NN calculates the distance to every other record in the data set for each record in turn. This paper evaluates a novel k-NN classifier with linear growth and faster run-time built from binary neural networks. The binary neural approach uses robust encoding to map standard ordinal, categorical and real-valued data sets onto a binary neural network. The binary neural network uses high speed pattern matching to recall the k-best matches. We compare various configurations of the binary approach to a conventional approach for memory overheads, training speed, retrieval speed and retrieval accuracy. We demonstrate the superior performance with respect to speed and memory requirements of the binary approach compared to the standard approach and we pinpoint the optimal configurations.
Pattern Recognition | 2002
Victoria J. Hodge; Jim Austin
In this paper, we propose a simple and flexible spell checker using efficient associative matching in the AURA modular neural system. Our approach aims to provide a pre-processor for an information retrieval (IR) system allowing the users query to be checked against a lexicon and any spelling errors corrected, to prevent wasted searching. IR searching is computationally intensive so much so that if we can prevent futile searches we can minimise computational cost. We evaluate our approach against several commonly used spell checking techniques for memory-use, retrieval speed and recall accuracy. The proposed methodology has low memory use, high speed for word presence checking, reasonable speed for spell checking and a high recall rate.
Neural Networks | 2001
Victoria J. Hodge; Jim Austin
In this paper we evaluate a selection of data retrieval algorithms for storage efficiency, retrieval speed and partial matching capabilities using a large Information Retrieval dataset. We evaluate standard data structures, for example inverted file lists and hash tables, but also a novel binary neural network that incorporates: single-epoch training, superimposed coding and associative matching in a binary matrix data structure. We identify the strengths and weaknesses of the approaches. From our evaluation, the novel neural network approach is superior with respect to training speed and partial match retrieval time. From the results, we make recommendations for the appropriate usage of the novel neural approach.
Neural Computing and Applications | 2014
Victoria J. Hodge; Rajesh Krishnan; Jim Austin; John Polak; Thomas W. Jackson
AbstractThis paper introduces a binary neural network-based prediction algorithm incorporating both spatial and temporal characteristics into the prediction process. The algorithm is used to predict short-term traffic flow by combining information from multiple traffic sensors (spatial lag) and time series prediction (temporal lag). It extends previously developed Advanced Uncertain Reasoning Architecture (AURA) k-nearest neighbour (k-NN) techniques. Our task was to produce a fast and accurate traffic flow predictor. The AURA k-NN predictor is comparable to other machine learning techniques with respect to recall accuracy but is able to train and predict rapidly. We incorporated consistency evaluations to determine whether the AURA k-NN has an ideal algorithmic configuration or an ideal data configuration or whether the settings needed to be varied for each data set. The results agree with previous research in that settings must be bespoke for each data set. This configuration process requires rapid and scalable learning to allow the predictor to be set-up for new data. The fast processing abilities of the AURA k-NN ensure this combinatorial optimisation will be computationally feasible for real-world applications. We intend to use the predictor to proactively manage traffic by predicting traffic volumes to anticipate traffic network problems.
Neural Networks | 2004
Victoria J. Hodge; Ken Lees; Jim Austin
This paper evaluates a novel k-nearest neighbour (k-NN) classifier built from binary neural networks. The binary neural approach uses robust encoding to map standard ordinal, categorical and numeric data sets onto a binary neural network. The binary neural network uses high speed pattern matching to recall a candidate set of matching records, which are then processed by a conventional k-NN approach to determine the k-best matches. We compare various configurations of the binary approach to a conventional approach for memory overheads, training speed, retrieval speed and retrieval accuracy. We demonstrate the superior performance with respect to speed and memory requirements of the binary approach compared to the standard approach and we pinpoint the optimal configurations.