Victoria J. Madden
University of North Carolina at Chapel Hill
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Victoria J. Madden.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Stephanie E. A. Gratton; Patricia A. Ropp; Patrick D. Pohlhaus; J. Christopher Luft; Victoria J. Madden; Mary E. Napier; Joseph M. DeSimone
The interaction of particles with cells is known to be strongly influenced by particle size, but little is known about the interdependent role that size, shape, and surface chemistry have on cellular internalization and intracellular trafficking. We report on the internalization of specially designed, monodisperse hydrogel particles into HeLa cells as a function of size, shape, and surface charge. We employ a top-down particle fabrication technique called PRINT that is able to generate uniform populations of organic micro- and nanoparticles with complete control of size, shape, and surface chemistry. Evidence of particle internalization was obtained by using conventional biological techniques and transmission electron microscopy. These findings suggest that HeLa cells readily internalize nonspherical particles with dimensions as large as 3 μm by using several different mechanisms of endocytosis. Moreover, it was found that rod-like particles enjoy an appreciable advantage when it comes to internalization rates, reminiscent of the advantage that many rod-like bacteria have for internalization in nonphagocytic cells.
Nature | 2008
Chris B. Moore; Daniel T. Bergstralh; Joseph A. Duncan; Yu Lei; Thomas E. Morrison; Albert G. Zimmermann; Mary Ann Accavitti-Loper; Victoria J. Madden; Lijun Sun; Zhengmao Ye; John D. Lich; Mark T. Heise; Zhijian J. Chen; Jenny P.-Y. Ting
The RIG-like helicase (RLH) family of intracellular receptors detect viral nucleic acid and signal through the mitochondrial antiviral signalling adaptor MAVS (also known as Cardif, VISA and IPS-1) during a viral infection. MAVS activation leads to the rapid production of antiviral cytokines, including type 1 interferons. Although MAVS is vital to antiviral immunity, its regulation from within the mitochondria remains unknown. Here we describe human NLRX1, a highly conserved nucleotide-binding domain (NBD)- and leucine-rich-repeat (LRR)-containing family member (known as NLR) that localizes to the mitochondrial outer membrane and interacts with MAVS. Expression of NLRX1 results in the potent inhibition of RLH- and MAVS-mediated interferon-β promoter activity and in the disruption of virus-induced RLH–MAVS interactions. Depletion of NLRX1 with small interference RNA promotes virus-induced type I interferon production and decreases viral replication. This work identifies NLRX1 as a check against mitochondrial antiviral responses and represents an intersection of three ancient cellular processes: NLR signalling, intracellular virus detection and the use of mitochondria as a platform for anti-pathogen signalling. This represents a conceptual advance, in that NLRX1 is a modulator of pathogen-associated molecular pattern receptors rather than a receptor, and identifies a key therapeutic target for enhancing antiviral responses.
Nature | 2013
Zongdi Feng; Lucinda L. Hensley; Kevin L. McKnight; Fengyu Hu; Victoria J. Madden; Lifang Ping; Sook Hyang Jeong; Christopher J. Walker; Robert E. Lanford; Stanley M. Lemon
Animal viruses are broadly categorized structurally by the presence or absence of an envelope composed of a lipid-bilayer membrane, attributes that profoundly affect stability, transmission and immune recognition. Among those lacking an envelope, the Picornaviridae are a large and diverse family of positive-strand RNA viruses that includes hepatitis A virus (HAV), an ancient human pathogen that remains a common cause of enterically transmitted hepatitis. HAV infects in a stealth-like manner and replicates efficiently in the liver. Virus-specific antibodies appear only after 3–4 weeks of infection, and typically herald its resolution. Although unexplained mechanistically, both anti-HAV antibody and inactivated whole-virus vaccines prevent disease when administered as late as 2 weeks after exposure, when virus replication is well established in the liver. Here we show that HAV released from cells is cloaked in host-derived membranes, thereby protecting the virion from antibody-mediated neutralization. These enveloped viruses (‘eHAV’) resemble exosomes, small vesicles that are increasingly recognized to be important in intercellular communications. They are fully infectious, sensitive to extraction with chloroform, and circulate in the blood of infected humans. Their biogenesis is dependent on host proteins associated with endosomal-sorting complexes required for transport (ESCRT), namely VPS4B and ALIX. Whereas the hijacking of membranes by HAV facilitates escape from neutralizing antibodies and probably promotes virus spread within the liver, anti-capsid antibodies restrict replication after infection with eHAV, suggesting a possible explanation for prophylaxis after exposure. Membrane hijacking by HAV blurs the classic distinction between ‘enveloped’ and ‘non-enveloped’ viruses and has broad implications for mechanisms of viral egress from infected cells as well as host immune responses.
American Journal of Pathology | 2001
Nadia N. Malouf; William B. Coleman; Joe W. Grisham; Ruth A. Lininger; Victoria J. Madden; Matthew Sproul; Page A.W. Anderson
Recent evidence suggests that adult-derived stem cells, like their embryonic counterparts, are pluripotent. These simple, undifferentiated and uncommitted cells are able to respond to signals from their host tissue microenvironment and differentiate, producing progeny that display a phenotype characteristic of the mature cells of that tissue. We used a clonal stem cell line (termed WB-F344) that was derived from an adult male rat liver to investigate the possibility that uncommitted stem cells from a nonmyogenic tissue source would respond to the tissue microenvironment of the heart in vivo and differentiate into cardiac myocytes. Male WB-F344 cells that carry the Escherichia coli beta-galactosidase gene were identified in the left ventricular myocardium of adult female nude mice 6 weeks after transplantation. We confirmed the presence of a rat Y-chromosome-specific repetitive DNA sequence exclusively in the beta-galactosidase-positive myocytes by polymerase chain reaction and fluorescence in situ hybridization. Immunohistochemistry, using a cardiac troponin T-specific monoclonal antibody, and ultrastructural analysis confirmed a cardiac myocyte phenotype of the stem cell-derived myocytes. The beta-galactosidase-positive myocytes ranged from < 20 microm to 110 microm in length. The longer of these cells contained well-organized sarcomeres and myofibrils, and formed intercalated disks and gap junctions with endogenous (host-derived) myocytes, suggesting that WB-F344-derived myocytes participate in the function of the cardiac syncytium. These results demonstrate that adult liver-derived stem cells respond to the tissue microenvironment of the adult heart in vivo and differentiate into mature cardiac myocytes.
In Vitro Cellular & Developmental Biology – Plant | 1990
Cora Jean S. Edgell; Jill E. Haizlip; C. Robert Bagnell; Joan P. Packenham; Paul Harrison; Barry Wilbourn; Victoria J. Madden
SummaryWeibel-Palade bodies are ultrastructurally defined organelles found only in vascular endothelial cells. Because endothelium in corpo is very dispersed, isolation and further characterization of this organelle has been dependent on increasing the number of cells in culture. However, primary isolates of endothelial cells have a limited replication potential and tend to senesce in culture. In this report, EA.hy926, a continuously replicating cell line derived from human endothelium, is shown to contain Weibel-Palade bodies. Electron micrographs demonstrate the ultrastructural characteristics of these tissue-specific organelles and their cytoplasmic distribution in EA.hy926 cells. Von Willebrand factor, which has been shown to exist in Weibel Palade bodies, is demonstrated by immunofluorescence in discrete rod-shaped organelles whose size, shape, and distribution are consistent with that of Weibel-Palade bodies in primary endothelial cell cultures. Rapid release of von Willebrand factor can be induced by calcium ionophore, and large multimeric forms of the protein are found in EA.hy926 cells. These two properties are consistent with the function currently ascribed to Weibel Palade bodies: storage of multimerized von Willebrand factor. Thus ultrastructural, immunologic, and functional data establish the existence of this as yet poorly understood tissue-specific organelle in a continuous, vigorously replicating human cell line.
Journal of Clinical Investigation | 2016
Jenna B. Honeycutt; Angela Wahl; Caroline E. Baker; Rae Ann Spagnuolo; John L Foster; Oksana Zakharova; Stephen W. Wietgrefe; Carolina Caro-Vegas; Victoria J. Madden; Garrett Sharpe; Ashley T. Haase; Joseph J. Eron; J. Victor Garcia
Macrophages have long been considered to contribute to HIV infection of the CNS; however, a recent study has contradicted this early work and suggests that myeloid cells are not an in vivo source of virus production. Here, we addressed the role of macrophages in HIV infection by first analyzing monocytes isolated from viremic patients and patients undergoing antiretroviral treatment. We were unable to find viral DNA or viral outgrowth in monocytes isolated from peripheral blood. To determine whether tissue macrophages are productively infected, we used 3 different but complementary humanized mouse models. Two of these models (bone marrow/liver/thymus [BLT] mice and T cell-only mice [ToM]) have been previously described, and the third model was generated by reconstituting immunodeficient mice with human CD34+ hematopoietic stem cells that were devoid of human T cells (myeloid-only mice [MoM]) to specifically evaluate HIV replication in this population. Using MoM, we demonstrated that macrophages can sustain HIV replication in the absence of T cells; HIV-infected macrophages are distributed in various tissues including the brain; replication-competent virus can be rescued ex vivo from infected macrophages; and infected macrophages can establish de novo infection. Together, these results demonstrate that macrophages represent a genuine target for HIV infection in vivo that can sustain and transmit infection.
Nature Medicine | 2014
Daisuke Yamane; David R. McGivern; Eliane Wauthier; MinKyung Yi; Victoria J. Madden; Christoph Welsch; Iris Antes; Yahong Wen; Pauline E. Chugh; Charles E. McGee; Douglas G. Widman; Ichiro Misumi; Sibali Bandyopadhyay; Seungtaek Kim; Tetsuro Shimakami; Tsunekazu Oikawa; Jason K. Whitmire; Mark T. Heise; Dirk P. Dittmer; C. Cheng Kao; Stuart M. Pitson; Alfred H. Merrill; Lola M. Reid; Stanley M. Lemon
Oxidative tissue injury often accompanies viral infection, yet there is little understanding of how it influences virus replication. We show that multiple hepatitis C virus (HCV) genotypes are exquisitely sensitive to oxidative membrane damage, a property distinguishing them from other pathogenic RNA viruses. Lipid peroxidation, regulated in part through sphingosine kinase-2, severely restricts HCV replication in Huh-7 cells and primary human hepatoblasts. Endogenous oxidative membrane damage lowers the 50% effective concentration of direct-acting antivirals in vitro, suggesting critical regulation of the conformation of the NS3-4A protease and the NS5B polymerase, membrane-bound HCV replicase components. Resistance to lipid peroxidation maps genetically to transmembrane and membrane-proximal residues within these proteins and is essential for robust replication in cell culture, as exemplified by the atypical JFH1 strain of HCV. Thus, the typical, wild-type HCV replicase is uniquely regulated by lipid peroxidation, providing a mechanism for attenuating replication in stressed tissue and possibly facilitating long-term viral persistence.
Journal of Phycology | 2002
R. Wayne Litaker; Mark W. Vandersea; Steven R. Kibler; Victoria J. Madden; Edward J. Noga; Patricia A. Tester
The putatively toxic dinoflagellate Pfiesteria piscicida (Steidinger et Burkholder) has been reported to have an unusual life cycle for a free‐living marine dinoflagellate. As many as 24 life cycle stages were originally described for this species. During a recent phylogenetic study in which we used clonal cultures of P. piscicida, we were unable to confirm many reported life cycle stages. To resolve this discrepancy, we undertook a rigorous examination of the life cycle of P. piscicida using nuclear staining techniques combined with traditional light microscopy, high‐resolution video microscopy, EM, and in situ hybridization with a suite of fluorescently labeled peptide nucleic acid (PNA) probes. The results showed that P. piscicida had a typical haplontic dinoflagellate life cycle. Asexual division occurred within a division cyst and not by binary fission of motile cells. Sexual reproduction of this homothallic species occurred via the fusion of isogamous gametes. Examination of tanks where P. piscicida was actively feeding on fish showed that amoebae were present; however, they were contaminants introduced with the fish. Whole cell probing using in situ hybridization techniques confirmed that these amoebae were hybridization negative for a P. piscicida‐specific PNA probe. Direct observations of clonal P. piscicida cultures revealed no unusual life cycle stages. Furthermore, the results of this study provided no evidence for transformations to amoebae. We therefore conclude that P. piscicida has a life cycle typical of free‐living marine dinoflagellates and lacks any amoeboid or other specious stages.
Molecular Cell | 2014
Scott A. Houck; Hong Yu Ren; Victoria J. Madden; Jaclyn N. Bonner; Michael P. Conlin; Jo Ann Janovick; P. Michael Conn; Douglas M. Cyr
Molecular chaperones triage misfolded proteins via action as substrate selectors for quality control (QC) machines that fold or degrade clients. Herein, the endoplasmic reticulum (ER)-associated Hsp40 JB12 is reported to participate in partitioning mutant conformers of gonadotropin-releasing hormone receptor (GnRHR), a G protein-coupled receptor, between ER-associated degradation (ERAD) and an ERQC autophagy pathway. ERQC autophagy degrades E90K-GnRHR because pools of its partially folded and detergent-soluble degradation intermediates are resistant to ERAD. S168R-GnRHR is globally misfolded and disposed of via ERAD, but inhibition of p97, the protein retrotranslocation motor, shunts S168R-GnRHR from ERAD to ERQC autophagy. Partially folded and grossly misfolded forms of GnRHR associate with JB12 and Hsp70. Elevation of JB12 promotes ERAD of S168R-GnRHR, with E90K-GnRHR being resistant. E90K-GnRHR elicits association of the Vps34 autophagy initiation complex with JB12. Interaction between ER-associated Hsp40s and the Vps34 complex permits the selective degradation of ERAD-resistant membrane proteins via ERQC autophagy.
Journal of Immunology | 2009
Max Tze Han Huang; Debra J. Taxman; Elizabeth Holley-Guthrie; Chris B. Moore; Stephen B. Willingham; Victoria J. Madden; Rebecca Keyser Parsons; Gerald L. Featherstone; Roland R. Arnold; Brian P. O'Connor; Jenny P.-Y. Ting
Periodontal disease is a chronic inflammatory disorder that leads to the destruction of tooth-supporting tissue and affects 10–20 million people in the U.S. alone. The oral pathogen Porphyromonas gingivalis causes inflammatory host response leading to periodontal and other secondary inflammatory diseases. To identify molecular components that control host response to P. gingivalis in humans, roles for the NLR (NBD-LRR) protein, NLRP3 (cryopyrin, NALP3), and its adaptor apoptotic speck protein containing a C-terminal caspase recruitment domain (ASC) were studied. P. gingivalis strain A7436 induces cell death in THP1 monocytic cells and in human primary peripheral blood macrophages. This process is ASC and NLRP3 dependent and can be replicated by P. gingivalis LPS and Escherichia coli. P. gingivalis-induced cell death is caspase and IL-1 independent and exhibits morphological features consistent with necrosis including loss of membrane integrity and release of cellular content. Intriguingly, P. gingivalis-induced cell death is accompanied by the formation of ASC aggregation specks, a process not previously described during microbial infection. ASC specks are observed in P. gingivalis-infected primary human mononuclear cells and are dependent on NLRP3. This work shows that P. gingivalis causes ASC- and NLRP3-dependent necrosis, accompanied by ASC speck formation.