Victoria Kearns
University of Liverpool
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Victoria Kearns.
Journal of Tissue Engineering and Regenerative Medicine | 2008
Ana C. MacIntosh; Victoria Kearns; Aileen Crawford; Paul V. Hatton
Silks have been proposed as potential scaffold materials for tissue engineering, mainly because of their physical properties. They are stable at physiological temperatures, flexible and resist tensile and compressive forces. Bombyx mori (silkworm) cocoon silk has been used as a suture material for over a century, and has proved to be biocompatible once the immunogenic sericin coating is removed. Spider silks have a similar structure to silkworm silk but do not have a sericin coating. This paper provides a general overview on the use of silk protein in biomaterials, with a focus on skeletal tissue engineering. Copyright
Expert Review of Medical Devices | 2009
Victoria Kearns; Rachel Williams
Topical and systemic administration of drugs to the eye is highly inefficient and there is a need for controlled, sustained release, particularly for conditions that affect the posterior segment. Various nonimplantable and implantable drug delivery devices have been developed. Colloidal carriers may allow targeted drug delivery and afford protection to substances that are sensitive to degradation, particularly RNA/DNA-based treatments. Gene therapy and cell transplantation are also starting to emerge as alternatives to conventional pharmacological treatment. There is the potential to use existing ocular devices to deliver drugs. In order to exploit this opportunity, modifications to drugs and devices, along with clarification of the appropriate drug dose, must be undertaken. This review will describe some of the treatment options for ocular disease and barriers to drug delivery, discuss the design of existing drug delivery systems and highlight some of the research into combining drug delivery with existing ocular medical devices.
BioMed Research International | 2011
Wing Yan Yu; Carl Sheridan; Ian Grierson; Sharon Mason; Victoria Kearns; Amy C. Y. Lo; David T. Wong
Several adult stem cell types have been found in different parts of the eye, including the corneal epithelium, conjunctiva, and retina. In addition to these, there have been accumulating evidence that some stem-like cells reside in the transition area between the peripheral corneal endothelium (CE) and the anterior nonfiltering portion of the trabecular meshwork (TM), which is known as the Schwalbes Ring region. These stem/progenitor cells may supply new cells for the CE and TM. In fact, the CE and TM share certain similarities in terms of their embryonic origin and proliferative capacity in vivo. In this paper, we discuss the putative stem cell source which has the potential for replacement of lost and nonfunctional cells in CE diseases and glaucoma. The future development of personalized stem cell therapies for the CE and TM may reduce the requirement of corneal grafts and surgical treatments in glaucoma.
British Journal of Ophthalmology | 2011
Yamini Krishna; Carl Sheridan; David Kent; Victoria Kearns; Ian Grierson; Rachel Williams
Background Retinal pigment epithelial (RPE) transplantation presents a potential treatment for age-related macular degeneration (AMD). A suitable transplant membrane that can support an intact functioning RPE monolayer is required. Expanded polytetrafluoroethylene (ePTFE) possesses the physical properties required for a transplanting device; however, cells do not attach and spread on ePTFE. This study investigated the ability of surface-modified ePTFE to optimise the growth and function of healthy RPE monolayers. Methods ePTFE discs were modified by ammonia gas plasma treatment. ARPE-19 cells were seeded on the membranes and maintained in media supplemented with retinoic acid and reduced serum. Cell number, morphology and proliferation were analysed. RPE monolayer function was investigated through formation of cell–cell junctions and phagocytosis of photoreceptor outer segments (POS). Results Ammonia gas plasma treatment resulted in enhanced cell growth and good monolayer formation with evidence of cell–cell junctional proteins. Furthermore, RPE monolayers were able to phagocytose POS in a time-dependent manner. Conclusions ePTFE can be surface-modified to support an intact functional monolayer of healthy RPE cells with normal morphology and the ability to perform RPE-specific functions. Following further investigation ePTFE may be considered for use in transplantation.
Journal of Materials Science: Materials in Medicine | 2012
Victoria Kearns; Anita Mistry; Sharon Mason; Yamini Krishna; Carl Sheridan; Robert D. Short; Rachel Williams
Subretinal transplantation of functioning retinal pigment epithelial (RPE) cells grown on a synthetic substrate is a potential treatment for age-related macular degeneration (AMD), a common cause of irreversible vision loss in developed countries. Plasma polymers give the opportunity to tailor the surface chemistry of the artificial substrate whilst maintaining the bulk properties. In this study, plasma polymers with different functionalities were investigated in terms of their effect on RPE attachment and growth. Plasma polymers of acrylic acid (AC), allyl amine (AM) and allyl alcohol (AL) were fabricated and characterised using X-ray photoelectron spectroscopy (XPS) and water contact angle measurements. Octadiene (OD) hydrocarbon films and tissue culture polystyrene were used as controls. Wettability varied from hydrophobic OD to relatively hydrophilic AC. XPS demonstrated four very different surfaces with the expected functionalities. Attachment, proliferation and morphological examination of an RPE cell line and primary RPE cells were investigated. Both cell types grew on all surfaces, with the exception of OD, although the proliferation rate of primary cells was low. Good epithelial morphology was also demonstrated. Plasma polymerised films show potential as cell carrier surfaces for RPE cells in the treatment of AMD.
Regenerative Medicine | 2011
Sharon Mason; Rosalind M. K. Stewart; Victoria Kearns; Rachel Williams; Carl Sheridan
Visual loss may be caused by a variety of ocular diseases and places a significant burden on society. Replacing or regenerating epithelial structures in the eye has been demonstrated to recover visual loss in a number of such diseases. Several types of cells (e.g., embryonic stem cells, adult stem/progenitor/differentiated epithelial cells and induced pluripotent cells) have generated much interest and research into their potential in restoring vision in a variety of conditions: from ocular surface disease to age-related macular degeneration. While there has been some success in clinical transplantation of conjunctival and particularly corneal epithelium utilizing ocular stem cells, in particular, from the limbus, the replacement of the retinal pigment epithelium by utilizing stem cell sources has yet to reach the clinic. Advances in our understanding of all of these cell types, their differentiation and subsequent optimization of culture conditions and development of suitable substrates for their transplantation will enable us to overcome current clinical obstacles. This article addresses the current status of knowledge concerning the biology of stem cells, their progeny and the use of differentiated epithelial cells to replace ocular epithelial cells. It will highlight the clinical outcomes to date and their potential for future clinical use.
Journal of Clinical Periodontology | 2013
Victoria Kearns; Rachel Williams; Felora Mirvakily; P. J. Doherty; Nicolas Martin
AIM To assess the potential of gingival fibroblasts to attach in a predetermined linear orientation to a nano-topography of aligned fibres on titanium surfaces and determine the ability of such cells to deposit aligned collagen fibre matrix. MATERIALS AND METHODS smooth glass and rough titanium substrates were coated with polytetrafluoroethylene (PTFE) nano-fibres. Ammonia plasma treatment was used to modify the surface chemistry. Human gingival fibroblasts were cultured on substrates and orientation and collagen deposition was assessed. RESULTS Straight, unidirectional, parallel PTFE nano-fibres were deposited over the titanium features. By 7 days, the majority of cells were observed to orient to untreated fibres despite the presence of competing titanium surface features. On plasma-treated fibre-coated titanium substrates, cell orientation was mixed. On uncoated substrates, the majority of cells oriented to the titanium surface features. On fibre-coated glass substrates, cells oriented themselves with untreated and plasma-treated fibres and secreted collagen in the same direction after 1 week. On uncoated glass substrates, there was no preferred direction of collagen orientation. CONCLUSION Polytetrafluoroethylene nano-fibres induced cell and collagen orientation. Surface chemistry appeared only to affect cell behaviour at early time points. An implant surface that controls cell orientation may also influence the orientation of collagen, providing improved gingival support.
Investigative Ophthalmology & Visual Science | 2013
Rachel Williams; Victoria Kearns; Amy C. Y. Lo; Michael Day; Michael Joseph Garvey; Yamini Krishna; Da Ma; Theodor Stappler; David Wong
PURPOSE The aim of this study was to produce a heavy tamponade with a specific gravity greater than 1.06 g/mL that was optically transparent, could be manufactured using simple processing, could be injected using standard clinical equipment, and would have appropriate biocompatibility. METHODS Aerosil silica was added to a phenyl trimethicone and mixed via a roller, overhead stirring, and ultrasonics. The refractive index, visible absorbance, and shear viscosity were measured. The injectability of the solutions was evaluated using the Accurus Viscous Fluid Injection system. The tamponade efficiency was assessed using a model eye chamber and compared with that of Densiron 68, Oxane HD, and F6H8. The biocompatibility was evaluated in vitro and in vivo in rabbits. RESULTS Tamponade agents were produced with specific gravities of 1.10, 1.11, 1.13, and 1.16 g/mL that had good optical clarity. Mixing using overhead stirring was sufficient to produce tamponade agents with shear viscosities in the range 1000 to 5000 mPa·s that were reproducible and stable during storage. The solutions were easier to inject using the Accurus Viscous Fluid Injection system than silicone oil 1000 mPa·s. The 11% silica solution had greater tamponade efficiency than Densiron 68 or Oxane HD. There was no evidence of cytotoxicity in vitro. Silica solution 11% induced cataract earlier than Polydimethylsiloxane 1000 (PDMS 1000). Silica solution 11% and phenyl trimethicone reduced the a-wave value at 1 week after vitrectomy, but recovery was observed at later time points. Silica solution 11% caused inner nuclear layer (INL) nuclei dropdown in inferior retina from 4 weeks postoperation. Polydimethylsiloxane 1000 induced a similar phenomenon in superior retina 12 weeks postoperation. CONCLUSIONS We have produced a heavy tamponade with good clarity that has appropriate shear viscosity, injectibility, enhanced tamponade efficiency, and biocompatibility similar to that of PDMS 1000.
Surface Modification of Biomaterials#R##N#Methods Analysis and Applications | 2011
Victoria Kearns
Abstract: The chapter discusses the use of substrate topography to control cellular response. It details some of the fabrication methods used to produce controlled micro- and nanotopography, including both bottom-up and top-down techniques. The mechanisms by which cells respond to surface topography are discussed, in particular highlighting the complexity of this response and the importance of scale. The use of topography to control stem cell differentiation is also considered, and some of the potential biomedical and tissue engineering applications of surface topography are identified.
Journal of Materials Science: Materials in Medicine | 2010
Victoria Kearns; P. J. Doherty; G. Beamson; Nicolas Martin; Rachel Williams
A large number of cell types are known to respond to chemical and topographical patterning of substrates. Friction transfer of polytetrafluoroethylene (PTFE) onto substrates has been shown to produce continuous, straight, parallel nanofibres. Ammonia plasma treatment can be used to defluorinate the PTFE, decreasing the dynamic contact angle. Fibroblast and epithelial cells were elongated and oriented with their long axis parallel to the fibres, both individually and in clusters. The fibres restricted cell migration. Cell alignment was slightly reduced on the plasma-treated fibres. These results indicated that although surface topography can affect cellular response, surface chemistry also mediates the extent of this response.