Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Victoria L. Bautch is active.

Publication


Featured researches published by Victoria L. Bautch.


Proceedings of the National Academy of Sciences of the United States of America | 2008

A sonic hedgehog signaling domain in the arterial adventitia supports resident Sca1+ smooth muscle progenitor cells

Jenna Passman; Xiu Rong Dong; San Pin Wu; Colin T. Maguire; Kelly A. Hogan; Victoria L. Bautch; Mark W. Majesky

We characterize a sonic hedgehog (Shh) signaling domain restricted to the adventitial layer of artery wall that supports resident Sca1-positive vascular progenitor cells (AdvSca1). Using patched-1 (Ptc1lacZ) and patched-2 (Ptc2lacZ) reporter mice, adventitial Shh signaling activity was first detected at embryonic day (E) 15.5, reached the highest levels between postnatal day 1 (P1) and P10, was diminished in adult vessels, and colocalized with a circumferential ring of Shh protein deposited between the media and adventitia. In Shh−/− mice, AdvSca1 cells normally found at the aortic root were either absent or greatly diminished in number. Using a Wnt1-cre lineage marker that identifies cells of neural crest origin, we found that neither the adventitia nor AdvSca1 cells were labeled in arteries composed of neural crest-derived smooth muscle cells (SMCs). Although AdvSca1 cells do not express SMC marker proteins in vivo, they do express transcription factors thought to be required for SMC differentiation, including serum response factor (SRF) and myocardin family members, and readily differentiate to SMC-like cells in vitro. However, AdvSca1 cells also express potent repressors of SRF-dependent transcription, including Klf4, Msx1, and FoxO4, which may be critical for maintenance of the SMC progenitor phenotype of AdvSca1 cells in vivo. We conclude that a restricted domain of Shh signaling is localized to the arterial adventitia and may play important roles in maintenance of resident vascular SMC progenitor cells in the artery wall.


Molecular and Cellular Biology | 2003

BMPER, a novel endothelial cell precursor-derived protein, antagonizes bone morphogenetic protein signaling and endothelial cell differentiation

Martin Moser; Olav Binder; Yaxu Wu; Julius Aitsebaomo; Rongqin Ren; Christoph Bode; Victoria L. Bautch; Frank L. Conlon; Cam Patterson

ABSTRACT The development of endothelial cell precursors is essential for vasculogenesis. We screened for differentially expressed transcripts in endothelial cell precursors in developing mouse embryoid bodies. We cloned a complete cDNA encoding a protein that contains an amino-terminal signal peptide, five cysteine-rich domains, a von Willebrand D domain, and a trypsin inhibitor domain. We termed this protein BMPER (bone morphogenetic protein [BMP]-binding endothelial cell precursor-derived regulator). BMPER is specifically expressed in flk-1-positive cells and parallels the time course of flk-1 induction in these cells. In situ hybridization in mouse embryos demonstrates dorsal midline staining and staining of the aorto-gonadal-mesonephric region, which is known to host vascular precursor cells. BMPER is a secreted protein that directly interacts with BMP2, BMP4, and BMP6 and antagonizes BMP4-dependent Smad5 activation. In Xenopus embryos, ventral injection of BMPER mRNA results in axis duplication and downregulation of the expression of Xvent-1 (downstream target of Smad signaling). In an embryoid body differentiation assay, BMP4-dependent differentiation of endothelial cells in embryoid bodies is also antagonized by BMPER. Taken together, our data indicate that BMPER is a novel BMP-binding protein that is expressed by endothelial cell precursors, has BMP-antagonizing activity, and may play a role in endothelial cell differentiation by modulating local BMP activity.


Journal of Immunology | 2000

A Role for Fractalkine and Its Receptor (CX3CR1) in Cardiac Allograft Rejection

Lisa A. Robinson; Chandra Nataraj; Dennis W. Thomas; David N. Howell; Robert I. Griffiths; Victoria L. Bautch; Dhavalkumar D. Patel; Lili Feng; Thomas M. Coffman

The hallmark of acute allograft rejection is infiltration of the inflamed graft by circulating leukocytes. We studied the role of fractalkine (FKN) and its receptor, CX3CR1, in allograft rejection. FKN expression was negligible in nonrejecting cardiac isografts but was significantly enhanced in rejecting allografts. At early time points, FKN expression was particularly prominent on vascular tissues and endothelium. As rejection progressed, FKN expression was further increased, with prominent anti-FKN staining seen around vessels and on cardiac myocytes. To determine the capacity of FKN on endothelial cells to promote leukocyte adhesion, we performed adhesion assays with PBMC and monolayers of TNF-α-activated murine endothelial cells under low-shear conditions. Treatment with either anti-FKN or anti-CX3CR1-blocking Ab significantly inhibited PBMC binding, indicating that a large proportion of leukocyte binding to murine endothelium occurs via the FKN and CX3CR1 adhesion receptors. To determine the functional significance of FKN in rejection, we treated cardiac allograft recipients with daily injections of anti-CX3CR1 Ab. Treatment with the anti-CX3CR1 Ab significantly prolonged allograft survival from 7 ± 1 to 49 ± 30 days (p < 0.0008). These studies identify a critical role for FKN in the pathogenesis of acute rejection and suggest that FKN may be a useful therapeutic target in rejection.


Developmental Cell | 2009

Local Guidance of Emerging Vessel Sprouts Requires Soluble Flt-1

John C. Chappell; Sarah M. Taylor; Napoleone Ferrara; Victoria L. Bautch

Blood vessel networks form via sprouting of endothelial cells from parent vessels. Extrinsic cues guide sprouts after they leave the initiation site, but these cues are likely insufficient to regulate initial outward movement, and many embryonic vessel networks form in the absence of a strong extrinsic gradient. We hypothesized that nascent sprouts are guided by spatial cues produced along their own vessels, and that soluble Flt-1 (sFlt-1) participates in this guidance. Analysis of developing vessels with perturbed flt-1 function revealed misguided emerging sprouts, and transgenic sFlt-1 rescued sprout guidance parameters. sflt-1 activity in endothelial cells immediately adjacent to the emerging sprout significantly improved local sprout guidance. Thus, we propose that a vessel-intrinsic system initially guides emerging sprouts away from the parent vessel, utilizing spatially regulated expression of sFlt-1 in conjunction with exogenous VEGF-A. Local sprout guidance defects are predicted to contribute to vessel dysmorphogenesis during perturbed development and disease.


American Journal of Pathology | 2004

The vascular endothelial growth factor (VEGF) receptor Flt-1 (VEGFR-1) modulates Flk-1 (VEGFR-2) signaling during blood vessel formation.

David M. Roberts; Joseph B. Kearney; Jennifer H. Johnson; Michael P. Rosenberg; Rakesh Kumar; Victoria L. Bautch

Mice lacking the vascular endothelial growth factor (VEGF) receptor flt-1 (VEGFR-1) die from vascular overgrowth, caused primarily by aberrant endothelial cell division (Kearney JB, Ambler CA, Monaco KA, Johnson N, Rapoport RG, Bautch VL: Vascular endothelial growth factor receptor Flt-1 negatively regulates developmental blood vessel formation by modulating endothelial cell division. Blood 2002, 99:2397-2407). Because a second high-affinity VEGF receptor, flk-1, produces a positive endothelial proliferation signal, it was logical to ask whether flt-1 affects developmental blood vessel formation by modulating signaling through flk-1. Differentiated embryonic stem cell cultures lacking flt-1 (flt-1-/-) had increased flk-1 tyrosine phosphorylation, indicating that flk-1 signaling is up-regulated in the mutant background. The selective flk-1 inhibitor SU5416 partially rescued the flt-1-/- mutant phenotype, and this rescue was accompanied by a decrease in the relative amount of flk-1 tyrosine phosphorylation. Thus reduced flk-1 signal transduction can partially compensate for the lack of flt-1. The flt-1-/- mutant phenotype was also partially rescued by Flt-1/Fc, a truncated flt-1 that binds and sequesters the VEGF ligand. Taken together, these data show that down-regulation of flk-1 signaling by two different strategies partially rescues the developmental vascular overgrowth seen in the absence of flt-1, and they support a model whereby flt-1 modulates the flk-1 signal at an early point in the pathway.


Development | 2004

The neural tube patterns vessels developmentally using the VEGF signaling pathway.

Kelly A. Hogan; Carrie A. Ambler; Deborah L. Chapman; Victoria L. Bautch

Embryonic blood vessels form in a reproducible pattern that interfaces with other embryonic structures and tissues, but the sources and identities of signals that pattern vessels are not well characterized. We hypothesized that the neural tube provides vascular patterning signal(s) that direct formation of the perineural vascular plexus (PNVP) that encompasses the neural tube at mid-gestation. Both surgically placed ectopic neural tubes and ectopic neural tubes engineered genetically were able to recruit a vascular plexus, showing that the neural tube is the source of a vascular patterning signal. In mouse-quail chimeras with the graft separated from the neural tube by a buffer of host cells, graft-derived vascular cells contributed to the PNVP, indicating that the neural tube signal(s) can act at a distance. Murine neural tube vascular endothelial growth factor A (VEGFA) expression was temporally and spatially correlated with PNVP formation, suggesting it is a component of the neural tube signal. A collagen explant model was developed in which presomitic mesoderm explants formed a vascular plexus in the presence of added VEGFA. Co-cultures between presomitic mesoderm and neural tube also supported vascular plexus formation, indicating that the neural tube could replace the requirement for VEGFA. Moreover, a combination of pharmacological and genetic perturbations showed that VEGFA signaling through FLK1 is a required component of the neural tube vascular patterning signal. Thus, the neural tube is the first structure identified as a midline signaling center for embryonic vascular pattern formation in higher vertebrates, and VEGFA is a necessary component of the neural tube vascular patterning signal. These data suggest a model whereby embryonic structures with little or no capacity for angioblast generation act as a nexus for vessel patterning.


Nature Medicine | 2011

Stem cells and the vasculature

Victoria L. Bautch

Unraveling the contribution of stem and progenitor cells to blood vessel formation and, reciprocally, the importance of blood vessels to the production and function of stem and progenitor cells, has been a major focus of vascular research over the last decade, but has spawned many controversies. Here I review how vascular stem and progenitor cells contribute both vascular and nonvascular cells during development and in disease, and how nonvascular stem and progenitor cells might contribute to vascular lineages. I also discuss the role of the vasculature in forming stem and progenitor cell niches. Finally, I highlight the potential relevance of these relationships to disease etiology and treatment.


Developmental Biology | 2009

Endocardial cells are a distinct endothelial lineage derived from Flk1 + multipotent cardiovascular progenitors

Andrew Misfeldt; Scott Boyle; Kevin Tompkins; Victoria L. Bautch; Patricia A. Labosky; H. Scott Baldwin

Identification of multipotent cardiac progenitors has provided important insights into the mechanisms of myocardial lineage specification, yet has done little to clarify the origin of the endocardium. Despite its essential role in heart development, characterization of the endocardial lineage has been limited by the lack of specific markers of this early vascular subpopulation. To distinguish endocardium from other vasculature, we generated an NFATc1-nuc-LacZ BAC transgenic mouse line capable of labeling this specific endothelial subpopulation at the earliest stages of cardiac development. To further characterize endocardiogenesis, embryonic stem cells (ESCs) derived from NFATc1-nuc-LacZ blastocysts were utilized to demonstrate that endocardial differentiation in vitro recapitulates the close temporal-spatial relationship observed between myocardium and endocardium seen in vivo. Endocardium is specified as a cardiac cell lineage, independent from other vascular populations, responding to BMP and Wnt signals that enhance cardiomyocyte differentiation. Furthermore, a population of Flk1+ cardiovascular progenitors, distinct from hemangioblast precursors, represents a mesodermal precursor of the endocardial endothelium, as well as other cardiovascular lineages. Taken together, these studies emphasize that the endocardium is a unique cardiac lineage and provides further evidence that endocardium and myocardium are derived from a common precursor.


Developmental Dynamics | 1996

Blood island formation in attached cultures of murine embryonic stem cells

Victoria L. Bautch; William L. Stanford; Rebecca Rapoport; Scott Russell; Robert S. Byrum; Tracy A. Futch

Differentiation of murine embryonic stem cells in suspension culture results in the formation of cystic embryoid bodies that develop blood islands. In this study pre‐cystic embryoid bodies were attached to a substratum, and the program of differentiation was monitored. The attached ES cell cultures formed blood islands on a cell layer that migrated out from the center of attachment and beneath a mesothelial‐like cell layer. Morphological and in situ marker analysis showed benzidine‐positive hematopoietic cells surrounded by vascular endothelial cells that expressed PECAM and took up DiI‐Ac‐LDL. Waves of morphological differentiation were evident, suggesting a graded response to differentiation signals. Electron microscopy of the blood islands showed that they were similar to blood islands of cystic embryoid bodies and mouse yolk sacs, and cell‐cell junctions were evident among the blood island cells. RNA expression analysis was consistent with the presence of hematopoietic precursor cells of several lineages and a primitive vascular endothelium in the cultures. Thus a program of vascular and hematopoietic development can be elaborated in attached ES cell cultures, and these blood islands are accessible to experimental manipulation.


Molecular and Cellular Biology | 2003

HoxB5 is an upstream transcriptional switch for differentiation of the vascular endothelium from precursor cells.

Yaxu Wu; Martin Moser; Victoria L. Bautch; Cam Patterson

ABSTRACT Endothelial cells differentiate from mesoderm-derived precursors to initiate the earliest events in vascular development. Although the signaling events that regulate the successive steps of vascular development are known in some detail, the transcriptional processes that regulate the first steps in vasculogenesis are not well defined. We have studied the regulatory mechanisms of flk1 expression as a model to understand the upstream events in endothelial cell differentiation, since flk1 is the earliest marker of endothelial precursors. Using a variety of biochemical approaches, we identified a cis-acting element in the first intron of the flk1 gene that is required for endothelium-dependent expression in transgenic reporter gene assays. Using the yeast one-hybrid system, we identified HoxB5 as the transcription factor that binds this cis-acting element, the HoxB5-binding element (HBE). HoxB5 mRNA colocalized with flk1 expression in differentiating embryoid bodies, and HoxB5 potently transactivated the flk1 promoter in an HBE-dependent fashion in transient-transfection assays. Overexpression of HoxB5 led to expansion of flk1+ angioblasts in differentiating embryoid bodies and increased the number of PECAM (platelet-endothelial cell adhesion molecule)-positive primitive blood vessels. HoxB5 is necessary and sufficient to activate the cell-intrinsic events that regulate the differentiation of angioblasts and mature endothelial cells from their mesoderm-derived precursors.

Collaboration


Dive into the Victoria L. Bautch's collaboration.

Top Co-Authors

Avatar

John C. Chappell

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Joseph B. Kearney

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Erich J. Kushner

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Diana C. Chong

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gefei Zeng

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Nicholas C. Kappas

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Zhixian Yu

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Rebecca Rapoport

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge