Victoria L. Morgan
Vanderbilt University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Victoria L. Morgan.
Journal of Cognitive Neuroscience | 2000
Emily D. Grossman; M. Donnelly; Ronald R. Price; David R. Pickens; Victoria L. Morgan; G. Neighbor; Randolph Blake
These experiments use functional magnetic resonance imaging (fMRI) to reveal neural activity uniquely associated with perception of biological motion. We isolated brain areas activated during the viewing of point-light figures, then compared those areas to regions known to be involved in coherent-motion perception and kinetic-boundary perception. Coherent motion activated a region matching previous reports of human MT/MST complex located on the temporo-parieto-occipital junction. Kinetic boundaries activated a region posterior and adjacent to human MT previously identified as the kinetic-occipital (KO) region or the lateral-occipital (LO) complex. The pattern of activation during viewing of biological motion was located within a small region on the ventral bank of the occipital extent of the superior-temporal sulcus (STS). This region is located lateral and anterior to human MT/MST, and anterior to KO. Among our observers, we localized this region more frequently in the right hemisphere than in the left. This was true regardless of whether the point-light figures were presented in the right or left hemifield. A small region in the medial cerebellum was also active when observers viewed biological-motion sequences. Consistent with earlier neuroimaging and single-unit studies, this pattern of results points to the existence of neural mechanisms specialized for analysis of the kinematics defining biological motion.
Journal of Cardiovascular Magnetic Resonance | 1999
Christine H. Lorenz; Eloisa S. Walker; Victoria L. Morgan; Stacy S. Klein; Thomas P. Graham
Our objective was to establish normal ranges of left and right ventricular mass and function with cine magnetic resonance imaging (MRI) and to determine gender differences. Seventy-five healthy subjects (age range 8-55, mean 28 yr) were studied with cine MRI. Ten dogs were imaged for autopsy validation with a mean difference between actual and MRI-determined mass of 0.2 A +/- 8.4 g. Intraobserver and interobserver variability and interstudy variability were 5-6%. All parameters were significantly different between males and females except ejection fraction and the left ventricular mass to end-diastolic volume ratio. Agreement with published autopsy series, including gender differences, was excellent. This study presents normative MRI data that can be used for comparing individual patients and for further study of right and left ventricular interaction.
Gastroenterology | 2000
Howard Mertz; Victoria L. Morgan; Gordon Tanner; David R. Pickens; Ronald R. Price; Yu Shyr; Robert M. Kessler
BACKGROUND & AIMS Irritable bowel syndrome (IBS) is characterized by visceral hypersensitivity, possibly related to abnormal brain-gut communication. Positron emission tomography imaging has suggested specific central nervous system (CNS) abnormalities in visceral pain processing in IBS. This study aimed to determine (1) if functional magnetic resonance imaging (fMRI) detects CNS activity during painful and nonpainful visceral stimulation; and (2) if CNS pain centers in IBS respond abnormally. METHODS fMRI was performed during nonpainful and painful rectal distention in 18 patients with IBS and 16 controls. RESULTS Rectal stimulation increased the activity of anterior cingulate (33/34), prefrontal (32/34), insular cortices (33/34), and thalamus (32/34) in most subjects. In IBS subjects, but not controls, pain led to greater activation of the anterior cingulate cortex (ACC) than did nonpainful stimuli. IBS patients had a greater number of pixels activated in the ACC and reported greater intensity of pain at 55-mm Hg distention than controls. CONCLUSIONS IBS patients activate the ACC, a critical CNS pain center, to a greater extent than controls in response to a painful rectal stimulus. Contrary to previous reports, these data suggest heightened pain sensitivity of the brain-gut axis in IBS, with a normal pattern of activation.
Gut | 2005
Victoria L. Morgan; David R. Pickens; S Gautam; Ronald C. Kessler; Howard Mertz
Background and aims: Irritable bowel syndrome (IBS) is a disorder of intestinal hypersensitivity and altered motility, exacerbated by stress. Functional magnetic resonance imaging (fMRI) during painful rectal distension in IBS has demonstrated greater activation of the anterior cingulate cortex (ACC), an area relevant to pain and emotions. Tricyclic antidepressants are effective for IBS. The aim of this study was to determine if low dose amitriptyline reduces ACC activation during painful rectal distension in IBS to confer clinical benefits. Secondary aims were to identify other brain regions altered by amitriptyline, and to determine if reductions in cerebral activation are greater during mental stress. Methods: Nineteen women with painful IBS were randomised to amitriptyline 50 mg or placebo for one month and then crossed over to the alternate treatment after washout. Cerebral activation during rectal distension was compared between placebo and amitriptyline groups by fMRI. Distensions were performed alternately during auditory stress and relaxing music. Results: Rectal pain induced significant activation of the perigenual ACC, right insula, and right prefrontal cortex. Amitriptyline was associated with reduced pain related cerebral activations in the perigenual ACC and the left posterior parietal cortex, but only during stress. Conclusions: The tricyclic antidepressant amitriptyline reduces brain activation during pain in the perigenual (limbic) anterior cingulated cortex and parietal association cortex. These reductions are only seen during stress. Amitriptyline is likely to work in the central nervous system rather than peripherally to blunt pain and other symptoms exacerbated by stress in IBS.
Epilepsia | 2011
Victoria L. Morgan; Baxter P. Rogers; Hasan H. Sonmezturk; John C. Gore; Bassel Abou-Khalil
Purpose Mesial temporal lobe epilepsy (mTLE) is a chronic disorder with spontaneous seizures recurring for years, or even decades. Many structural and functional changes have been detected in both the seizure focus and distal regions throughout the brain over this duration that may reflect the development of epileptogenic networks. Resting state functional magnetic resonance imaging (fMRI) connectivity mapping has the potential to elucidate and quantify these networks. The network between the left and right hippocampus may very likely be one of the most susceptible to changes due to long‐term seizure propagation effects. Therefore, the objective of this study was to quantify cross hippocampal influence in mTLE using high temporal resolution fMRI, and to determine its relationship with disease duration.
Human Brain Mapping | 2011
Allen T. Newton; Victoria L. Morgan; Baxter P. Rogers; John C. Gore
Interregional correlations between blood oxygen level dependent (BOLD) magnetic resonance imaging (fMRI) signals in the resting state have been interpreted as measures of connectivity across the brain. Here we investigate whether such connectivity in the working memory and default mode networks is modulated by changes in cognitive load. Functional connectivity was measured in a steady‐state verbal identity N‐back task for three different conditions (N = 1, 2, and 3) as well as in the resting state. We found that as cognitive load increases, the functional connectivity within both the working memory the default mode network increases. To test whether functional connectivity between the working memory and the default mode networks changed, we constructed maps of functional connectivity to the working memory network as a whole and found that increasingly negative correlations emerged in a dorsal region of the posterior cingulate cortex. These results provide further evidence that low frequency fluctuations in BOLD signals reflect variations in neural activity and suggests interaction between the default mode network and other cognitive networks. Hum Brain Mapp, 2010.
NeuroImage | 2004
Victoria L. Morgan; Ronald R. Price; Amir Arain; Pradeep N. Modur; Bassel Abou-Khalil
We report on the methods and initial findings of a novel noninvasive technique, resting functional magnetic resonance imaging (fMRI) with temporal clustering analysis (TCA), for localizing interictal epileptic activity. Nine subjects were studied including six temporal lobe epilepsy (TLE) patients with confirmed localization indicated by successful seizure control after resection. The remaining three subjects had standard presurgical evaluations with inconsistent results or suspected extratemporal lobe foci. Peaks of activity, presumably epileptic, were detected in all nine subjects, using the resting functional MRI with temporal clustering analysis. In all six patients who underwent resective surgery, the fMRI with temporal clustering analysis accurately determined the epileptogenic hippocampal hemisphere (P = 0.005). In the three subjects without confirmed localization, the technique determined regions of activity consistent with those determined by the presurgical assessments. Though more studies are required to validate this technique, the results demonstrate the potential of the resting fMRI with temporal clustering technique to detect and localize epileptic activity without the need for simultaneous electroencephalography (EEG). The greatest potential benefit of this technique will be in the evaluation of patients with suspected extratemporal lobe epilepsy and patients whose standard assessments are discordant.
Human Brain Mapping | 2007
Allen T. Newton; Victoria L. Morgan; John C. Gore
Correlations in blood oxygen level‐dependent (BOLD) MRI signals from separate areas within the human brain have been used as a measure of functional connectivity. Steady‐state measures of interregional correlations are particularly useful because they do not depend on the specific design of a task nor on subtracting conditions in a blocked design task. However, the conditions under which such correlations are measured may influence these indices of functional connectivity. The aim of this study was to investigate the influence of task demand on interregional correlations within the motor system. Specifically, tapping rates in audibly paced finger‐tapping tasks were controlled and varied between runs in order to observe their effects on interregional correlations to contralateral primary motor cortex (PM). Regions of interest included the supplementary motor area, ipsilateral cerebellum, ipsilateral auditory cortex, and a control region. It was found that tapping rate was a significant factor in determining the mean correlation of some regions to PM, and that correlations measured during tapping in general increased relative to resting state. Furthermore, analysis of the percent of voxels in each region significantly correlated to PM suggested that changes in the mean correlation of that region to PM could be accounted for by changes in the fraction of significantly correlated voxels within a region. This provides insight into the manner in which steady‐state correlations are modified in response to different task demands and further evidence that low‐frequency fluctuations in BOLD signals reflect functional connectivity. Hum Brain Mapp, 2006.
Epilepsia | 2012
Victoria L. Morgan; Hasan H. Sonmezturk; John C. Gore; Bassel Abou-Khalil
Purpose: Early surgical intervention can be advantageous in the treatment of refractory temporal lobe epilepsy (TLE). The success of TLE surgery relies on accurate lateralization of the seizure onset. The purpose of this study was to determine whether resting functional MRI (fMRI) connectivity mapping of the hippocampus has the potential to complement conventional presurgical evaluations in distinguishing left from right TLE. In addition, we sought to determine whether this same network might separate patients with favorable from unfavorable postoperative outcomes.
PLOS ONE | 2009
Victoria L. Morgan; Arabinda Mishra; Allen T. Newton; John C. Gore; Zhaohua Ding
Background The capabilities of magnetic resonance imaging (MRI) to measure structural and functional connectivity in the human brain have motivated growing interest in characterizing the relationship between these measures in the distributed neural networks of the brain. In this study, we attempted an integration of structural and functional analyses of the human language circuits, including Wernickes (WA), Brocas (BA) and supplementary motor area (SMA), using a combination of blood oxygen level dependent (BOLD) and diffusion tensor MRI. Methodology/Principal Findings Functional connectivity was measured by low frequency inter-regional correlations of BOLD MRI signals acquired in a resting steady-state, and structural connectivity was measured by using adaptive fiber tracking with diffusion tensor MRI data. The results showed that different language pathways exhibited different structural and functional connectivity, indicating varying levels of inter-dependence in processing across regions. Along the path between BA and SMA, the fibers tracked generally formed a single bundle and the mean radius of the bundle was positively correlated with functional connectivity. However, fractional anisotropy was found not to be correlated with functional connectivity along paths connecting either BA and SMA or BA and WA. Conclusions/Significance These findings suggest that structure-function relations in the human language circuits may involve a number of confounding factors that need to be addressed. Nevertheless, the insights gained from this work offers a useful guidance for continued studies that may provide a non-invasive means to evaluate brain network integrity in vivo for use in diagnosing and determining disease progression and recovery.