Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Victoria M. Bajo is active.

Publication


Featured researches published by Victoria M. Bajo.


Hearing Research | 1995

Morphology and spatial distribution of corticothalamic terminals originating from the cat auditory cortex.

Victoria M. Bajo; Eric M. Rouiller; Egbert Welker; Stephanie Clarke; Alessandro E. P. Villa; Yves de Ribaupierre; François de Ribaupierre

In this paper we studied the morphology and spatial distribution of corticothalamic axons and terminals originating from the auditory cortical fields of the cat. The anterograde tracer biocytin was injected at electrophysiologically characterized loci in the primary (AI) (N = 2), anterior (AAF) (N = 1), posterior (PAF) (N = 1) and secondary (AII) (N = 2) auditory fields. In all cases, two different types of labeled terminals were found in the auditory thalamus: small spherical endings (1-2 microns) and giant, finger-like endings (5-10 microns). After biocytin injections in AI and AAF, the majority of anterogradely labeled axons terminated in the rostral half of the pars lateralis (LV) of the ventral division of the medial geniculate body (vMGB). In LV, the corticothalamic axons ramified profusely, giving rise to dense terminal fields forming well delineated curved stripes, with small spherical endings. Additional terminal fields formed by small endings were observed in the medial division of the medial geniculate body (mMGB). Giant endings were observed in a small area in the dorsal nucleus (D) of the dorsal division of the medial geniculate body (dMGB), near its border with the vMGB. PAF projections were located in the caudal half of vMGB and in mMGB, where only small terminals were found. Giant endings were seen in the superficial part of dMGB emerging from labeled corticothalamic axons oriented in parallel to the dorsal surface of the MGB. Projections from AII gave rise to a main terminal field of small endings in D; a second terminal field consisting of giant endings intermingled with small endings was found in the deep dorsal nucleus (DD) of dMGB. We conclude that small terminals serve the feedback projection to the thalamic nucleus from which the injected cortical field receives its main input, whereas giant terminals cross the borders between the parallel ascending auditory pathways.


Journal of Neurophysiology | 2010

Lesions of the auditory cortex impair azimuthal sound localization and its recalibration in ferrets.

Fernando R. Nodal; Oliver Kacelnik; Victoria M. Bajo; Jennifer K. Bizley; David R. Moore; Andrew J. King

The role of auditory cortex in sound localization and its recalibration by experience was explored by measuring the accuracy with which ferrets turned toward and approached the source of broadband sounds in the horizontal plane. In one group, large bilateral lesions were made of the middle ectosylvian gyrus, where the primary auditory cortical fields are located, and part of the anterior and/or posterior ectosylvian gyrus, which contain higher-level fields. In the second group, the lesions were intended to be confined to primary auditory cortex (A1). The ability of the animals to localize noise bursts of different duration and level was measured before and after the lesions were made. A1 lesions produced a modest disruption of approach-to-target responses to short-duration stimuli (<500 ms) on both sides of space, whereas head orienting accuracy was unaffected. More extensive lesions produced much greater auditory localization deficits, again primarily for shorter sounds. In these ferrets, the accuracy of both the approach-to-target behavior and the orienting responses was impaired, and they could do little more than correctly lateralize the stimuli. Although both groups of ferrets were still able to localize long-duration sounds accurately, they were, in contrast to ferrets with an intact auditory cortex, unable to relearn to localize these stimuli after altering the spatial cues available by reversibly plugging one ear. These results indicate that both primary and nonprimary cortical areas are necessary for normal sound localization, although only higher auditory areas seem to contribute to accurate head orienting behavior. They also show that the auditory cortex, and A1 in particular, plays an essential role in training-induced plasticity in adult ferrets, and that this is the case for both head orienting responses and approach-to-target behavior.


The Journal of Comparative Neurology | 1999

Topographic organization of the dorsal nucleus of the lateral lemniscus in the cat

Victoria M. Bajo; Miguel A. Merchán; Manuel S. Malmierca; Fernando R. Nodal; Jan G. Bjaalie

The dorsal nucleus of the lateral lemniscus (DNLL) is an auditory structure of the brainstem. It plays an important role in binaural processing and sound localization and it provides the inferior colliculus with an inhibitory projection. The DNLL is a highly conserved auditory structure across mammals, but differences among species in its detailed organization have been reported.


Synapse | 2000

Muscarinic agonist carbachol depresses excitatory synaptic transmission in the rat basolateral amygdala in vitro.

Javier Yajeya; Antonio Fuente; J.M. Criado; Victoria M. Bajo; Adela Sánchez‐Riolobos; Margarita Heredia

Intracellular recordings in slice preparations of the basolateral amygdala were used to test which excitatory amino acid receptors mediate the excitatory postsynaptic potentials due to stimulation of the external capsule. These recordings were also used to examine the action of muscarinic agonists on the evoked excitatory potentials. Intracellular recordings from amygdaloid pyramidal neurons revealed that carbachol (2–20 μM) suppressed, in a dose‐dependent manner, excitatory postsynaptic responses evoked by stimulation of the external capsule (EC). This effect was blocked by atropine. The estimated effective concentration to produce half‐maximal response (EC50) was 6.2 μM. Synaptic suppression was observed with no changes in the input resistance of the recorded cells, suggesting a presynaptic mechanism. In addition, the results obtained using the paired‐pulse protocol provided additional support for a presynaptic action of carbachol. To identify which subtype of cholinergic receptors were involved in the suppression of the EPSP, four partially selective muscarinic receptor antagonists were used at different concentrations: pirenzepine, a compound with a similar high affinity for muscarinic M1 and M4 receptors; gallamine, a noncompetitive antagonist for M2; methoctramine, an antagonist for M2 and M4; and 4‐diphenylacetoxy‐N‐methylpiperidine, a compound with similar high affinity for muscarinic receptors M1 and M3. None of them independently antagonized the suppressive effect of carbachol on the evoked EPSP completely, suggesting that more than one muscarinic receptor subtype is involved in the effect. These experiments provide evidence that in the amygdala muscarinic agonists block the excitatory synaptic response, mediated by glutamic acid, by acting on several types of presynaptic receptors. Synapse 38:151–160, 2000.


Archive | 1993

THE COCHLEAR ROOT NEURONS IN THE RAT, MOUSE AND GERBIL

Dolores E. López; Miguel A. Merchán; Victoria M. Bajo; Enrique Saldaña

The auditory portion of the eighth cranial nerve (the cochlear nerve) contains a neuronal population which has been well documented only in a few species of small rodents belonging to the Muridae family.1


Brain Research Bulletin | 1998

Discharge properties of single neurons in the dorsal nucleus of the lateral lemniscus of the rat.

Victoria M. Bajo; Alessandro E. P. Villa; François de Ribaupierre; Eric M. Rouiller

The aim of the present study was to characterize the discharge properties of single neurons in the dorsal nucleus of the lateral lemniscus (DNLL) of the rat. In the absence of acoustic stimulation, two types of spontaneous discharge patterns were observed: units tended to fire in a bursting or in a nonbursting mode. The distribution of units in the DNLL based on spontaneous firing rate followed a rostrocaudal gradient: units with high spontaneous rates were most commonly located in the rostral part of the DNLL, whereas in the caudal part units had lower spontaneous discharge rates. The most common response pattern of DNLL units to 200 ms binaural noise bursts contained a prominent onset response followed by a lower but steady-state response and an inhibitory response in the early-off period. Thresholds of response to noise bursts were on average higher for DNLL units than for units recorded in the inferior colliculus under the same experimental conditions. The DNLL units were arranged according to a mediolateral sensitivity gradient with the lowest threshold units in the most lateral part of the nucleus. In the rat, as in other mammals, the most common DNLL binaural input type was an excitatory response to contralateral ear stimulation and inhibitory response to ipsilateral ear stimulation (EI type). Pure tone bursts were in general a more effective stimulus compared to noise bursts. Best frequency (BF) was established for 97 DNLL units and plotted according to their spatial location. The DNLL exhibits a loose tonotopic organization, where there is a concentric pattern with high BF units located in the most dorsal and ventral parts of the DNLL and lower BF units in the middle part of the nucleus.


Neuroscience | 1999

Muscarinic activation of a non-selective cationic conductance in pyramidal neurons in rat basolateral amygdala.

J Yajeya; A de la Fuente Juan; Victoria M. Bajo; A.S Riolobos; M Heredia; J.M Criado

In the present study, a cationic membrane conductance activated by the acetylcholine agonist carbachol was characterized in vitro in neurons of the basolateral amygdala. Extracellular perfusion of the K+ channel blockers Ba2+ and Cs+ or loading of cells with cesium acetate did not affect the carbachol-induced depolarization. Similarly, superfusion with low-Ca2+ solution plus Ba2+ and intracellular EGTA did not affect the carbachol-induced depolarization, suggesting a Ca2+-independent mechanism. On the other hand, the carbachol-induced depolarization was highly sensitive to changes in extracellular K+ or Na+. When the K+ concentration in the perfusion medium was increased from 4.7 to 10 mM, the response to carbachol increased in amplitude. In contrast, lowering the extracellular Na+ concentration from 143.2 to 29 mM abolished the response in a reversible manner. Results of coapplication of carbachol and atropine, pirenzepine or gallamine indicate that the carbachol-induced depolarization was mediated by muscarinic cholinergic receptors, but not the muscarinic receptor subtypes M1, M2 or M4, specifically. These data indicate that, in addition to the previously described reduction of a time- and voltage-independent K+ current (IKleak), a voltage- and time-dependent K+ current (IM), a slow Ca2+-activated K+ current (sIahp) and the activation of a hyperpolarization-activated inward rectifier K+ current (IQ), carbachol activated a Ca2+-independent non-selective cationic conductance that was highly sensitive to extracellular K+ and Na+ concentrations.


Experimental Brain Research | 1995

The auditory pathway in cat corpus callosum

Stephanie Clarke; François de Ribaupierre; Victoria M. Bajo; Eric M. Rouiller; Rudolf Kraftsik

The cortical auditory fields of the two hemispheres are interconnected via the corpus callosum. We have investigated the topographical arrangement of auditory callosal axons in the cat. Following circumscribed biocytin injections in the primary (AI), secondary (AII), anterior (AAF) and posterior (PAF) auditory fields, labelled axons have been found in the posterior two-thirds of the corpus callosum. Callosal axons labelled by small individual cortical injections did not form a tight bundle at the callosal midsagittal plane but spread over as much as one-third of the corpus callosum. Axons originating from different auditory fields were roughly topographically ordered, reflecting to some extent the rostro-caudal position of the field of origin. Axons from AAF crossed on average more rostrally than axons from AI; the latter crossed more rostrally than axons from PAF and AIL Callosal axons originating in a discrete part of the cortex travelled first in a relatively tight bundle to the telo-diencephalic junction and then dispersed progressively. In conclusion, the cat corpus callosum does not contain a sector reserved for auditory axons, nor a strictly topographically ordered auditory pathway. This observation is of relevance to neuropsychological and neuropathological observations in man.


Archive | 1997

The Nuclei of the Lateral Lemniscus

Miguel A. Merchán; Manuel S. Malmierca; Victoria M. Bajo; Jan G. Bjaalie

A unique feature of the auditory brainstem is the divergent/convergent nature of the path- ways from the auditory nerve to the inferior colliculus (IC, reviewed in Irvine, 1992). Some of the projections from the cochlear nucleus complex to the IC are direct while others are indirect via the superior olivary complex and the nuclei of the lateral lemniscus (NLL). In these nuclei, sig- nificant monaural and binaural information are extracted from the auditory signal.


Audiology | 1997

Single unit activity in the inferior colliculus of the rat elicited by electrical stimulation of the cochlea

Mattheus W. Vischer; Victoria M. Bajo; Jinsheng Zhang; E. Calciati; C. A. Haenggeli; Eric M. Rouiller

The activity of single neurons (n = 182) of the central nucleus of the inferior colliculus (CIC) of the rat was recorded in response to unilateral electrical stimulation of the left cochlea and/or acoustical stimulation of the right ear. The probability of response to both modes of stimulation was comparable (90 per cent for contralateral and 60 per cent for ipsilateral presentation). Response patterns consisted predominantly of onset excitations. Response latencies to electrical stimuli ranged from 3 to 21 ms, with an average value of 9.7 ms (SD = 3.5 ms) in the ipsilateral CIC and 6.6 ms (SD = 3.4 ms) in the contralateral CIC. With respect to binaural inputs, the majority of units were excited by stimulation of either ear (EE; about 60 per cent) while about one third were influenced by one ear only (EO). Units excited by one ear and inhibited by the other (EI) were rare. The main difference between the present implanted rats and normal animals was the virtual absence here of inhibitory effects for both types of stimuli when they were delivered to the ipsilateral ear (very few EI units).

Collaboration


Dive into the Victoria M. Bajo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge