Victoria M. Harman
University of Liverpool
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Victoria M. Harman.
Proteomics | 2011
Philip Brownridge; Stephen W. Holman; Simon J. Gaskell; Chris M. Grant; Victoria M. Harman; Simon J. Hubbard; Karin Lanthaler; Craig Lawless; Ronan O'Cualain; Paul F. G. Sims; Rachel Watkins; Robert J. Beynon
In this paper, we discuss the challenge of large‐scale quantification of a proteome, referring to our programme that aims to define the absolute quantity, in copies per cell, of at least 4000 proteins in the yeast Saccharomyces cerevisiae. We have based our strategy on the well‐established method of stable isotope dilution, generating isotopically labelled peptides using QconCAT technology, in which artificial genes, encoding concatenations of tryptic fragments as surrogate quantification standards, are designed, synthesised de novo and expressed in bacteria using stable isotopically enriched media. A known quantity of QconCAT is then co‐digested with analyte proteins and the heavy:light isotopologues are analysed by mass spectrometry to yield absolute quantification. This workflow brings issues of optimal selection of quantotypic peptides, their assembly into QconCATs, expression, purification and deployment.
Journal of Proteome Research | 2012
Stine L. Bislev; Ulrike Kusebauch; Marius Cosmin Codrea; Robert J. Beynon; Victoria M. Harman; Christine M. Røntved; Ruedi Aebersold; Robert L. Moritz; Emøke Bendixen
Mammalian host response to pathogens is associated with fluctuations in high abundant proteins in body fluids as well as in regulation of proteins expressed in relatively low copy numbers like cytokines secreted from immune cells and endothelium. Hence, efficient monitoring of proteins associated with host response to pathogens remains a challenging task. In this paper, we present a targeted proteome analysis of a panel of 20 proteins that are widely believed to be key players and indicators of bovine host response to mastitis pathogens. Stable isotope-labeled variants of two concordant proteotypic peptides from each of these 20 proteins were obtained through the QconCAT method. We present the quantotypic properties of these 40 proteotypic peptides and discuss their application to research in host-pathogen interactions. Our results clearly demonstrate a robust monitoring of 17 targeted host-response proteins. Twelve of these were readily quantified in a simple extraction of mammary gland tissues, while the expression levels of the remaining proteins were too low for direct and stable quantification; hence, their accurate quantification requires further fractionation of mammary gland tissues.
Molecular & Cellular Proteomics | 2016
Craig Lawless; Stephen W. Holman; Philip Brownridge; Karin Lanthaler; Victoria M. Harman; Rachel Watkins; Dean E. Hammond; Rebecca L. Miller; Paul F. G. Sims; Chris M. Grant; Claire E. Eyers; Robert J. Beynon; Simon J. Hubbard
Defining intracellular protein concentration is critical in molecular systems biology. Although strategies for determining relative protein changes are available, defining robust absolute values in copies per cell has proven significantly more challenging. Here we present a reference data set quantifying over 1800 Saccharomyces cerevisiae proteins by direct means using protein-specific stable-isotope labeled internal standards and selected reaction monitoring (SRM) mass spectrometry, far exceeding any previous study. This was achieved by careful design of over 100 QconCAT recombinant proteins as standards, defining 1167 proteins in terms of copies per cell and upper limits on a further 668, with robust CVs routinely less than 20%. The selected reaction monitoring-derived proteome is compared with existing quantitative data sets, highlighting the disparities between methodologies. Coupled with a quantification of the transcriptome by RNA-seq taken from the same cells, these data support revised estimates of several fundamental molecular parameters: a total protein count of ∼100 million molecules-per-cell, a median of ∼1000 proteins-per-transcript, and a linear model of protein translation explaining 70% of the variance in translation rate. This work contributes a “gold-standard” reference yeast proteome (including 532 values based on high quality, dual peptide quantification) that can be widely used in systems models and for other comparative studies.
Proteomics | 2013
Philip Brownridge; Craig Lawless; Aishwarya Payapilly; Karin Lanthaler; Stephen W. Holman; Victoria M. Harman; Chris M. Grant; Robert J. Beynon; Simon J. Hubbard
The network of molecular chaperones mediates the folding and translocation of the many proteins encoded in the genome of eukaryotic organisms, as well as a response to stress. It has been particularly well characterised in the budding yeast, Saccharomyces cerevisiae, where 63 known chaperones have been annotated and recent affinity purification and MS/MS experiments have helped characterise the attendant network of chaperone targets to a high degree. In this study, we apply our QconCAT methodology to directly quantify the set of yeast chaperones in absolute terms (copies per cell) via SRM MS. Firstly, we compare these to existing quantitative estimates of these yeast proteins, highlighting differences between approaches. Secondly, we cast the results into the context of the chaperone target network and show a distinct relationship between abundance of individual chaperones and their targets. This allows us to characterise the ‘throughput’ of protein molecules passing through individual chaperones and their groups on a proteome‐wide scale in an unstressed model eukaryote for the first time. The results demonstrate specialisations of the chaperone classes, which display different overall workloads, efficiencies and preference for the sub‐cellular localisation of their targets. The novel integration of the interactome data with quantification supports re‐estimates of the level of protein throughout going through molecular chaperones. Additionally, although chaperones target fewer than 40% of annotated proteins we show that they mediate the folding of the majority of protein molecules (∼62% of the total protein flux in the cell), highlighting their importance.
Omics A Journal of Integrative Biology | 2012
Da Qi; Philip Brownridge; Dong Xia; Katherine Mackay; Faviel F. Gonzalez-Galarza; Jenna Kenyani; Victoria M. Harman; Robert J. Beynon; Andrew R. Jones
Numerous software packages exist to provide support for quantifying peptides and proteins from mass spectrometry (MS) data. However, many support only a subset of experimental methods or instrument types, meaning that laboratories often have to use multiple software packages. The Progenesis LC-MS software package from Nonlinear Dynamics is a software solution for label-free quantitation. However, many laboratories using Progenesis also wish to employ stable isotope-based methods that are not natively supported in Progenesis. We have developed a Java programming interface that can use the output files produced by Progenesis, allowing the basic MS features quantified across replicates to be used in a range of different experimental methods. We have developed post-processing software (the Progenesis Post-Processor) to embed Progenesis in the analysis of stable isotope labeling data and top3 pseudo-absolute quantitation. We have also created export ability to the new data standard, mzQuantML, produced by the Proteomics Standards Initiative to facilitate the development and standardization process. The software is provided to users with a simple graphical user interface for accessing the different features. The underlying programming interface may also be used by Java developers to develop other routines for analyzing data produced by Progenesis.
Methods of Molecular Biology | 2012
Philip Brownridge; Victoria M. Harman; Deborah M. Simpson; Robert J. Beynon
In addition to protein identification, protein quantification is becoming a key output of proteomic experiments. Although relative quantification techniques are more commonplace and central to discovery proteomics, most assays require absolute quantification. The growth in systems biology has also increased the demand for absolute protein abundance values for input into models. QconCATs are created by concatenating peptide sequences taken from the target proteins into artificial proteins. The QconCAT acts as a source of internal standards and enables parallel absolute quantification of multiple proteins. QconCATs are typically applied in targeted proteomic workflows and so benefit from the greater sensitivity and wider dynamic range of these approaches. In this chapter, we discuss the design, construction, expression, and deployment of a QconCAT and the resulting experiments required for multiplex absolute quantification.
Journal of Proteome Research | 2014
Louise Bundgaard; Stine Jacobsen; Thomas F. Dyrlund; Mette Aa. Sørensen; Victoria M. Harman; Robert J. Beynon; Philip Brownridge; Lars Jelstrup Petersen; Emøke Bendixen
The aim of this study was the development of a quantitative assay that could support future studies of a panel of acute phase proteins (APPs) in the horse. The assay was based on a quantification concatamer (QconCAT) coupled to selected reaction monitoring methodology. Thirty-two peptides, corresponding to 13 putative or confirmed APPs for the Equus caballus (equine) species were selected for the design of a QconCAT construct. The gene encoding the QconCAT was synthesized and expressed as an isotope-labeled chimaeric protein in Escherichia coli. The QconCAT tryptic peptides were analyzed on a triple-quadrupole instrument, and the quantotypic properties were assessed in equine serum, wound tissue, and wound interstitial fluid. Reasonable quantotypic performance was found for 12, 14, and 14 peptides in serum, wound tissue, and interstitial fluid, respectively. Seven proteins were quantified in absolute terms in serum collected from a horse before and after the onset of a systemic inflammatory condition, and the observed protein concentrations were in close agreement with previous data. We conclude, that this QconCAT is applicable for concurrent quantitative analysis of multiple APPs in serum and may also support future studies of these proteins in other types of tissues and body fluids from the horse.
Wound Repair and Regeneration | 2016
Louise Bundgaard; Emøke Bendixen; Mette Aa. Sørensen; Victoria M. Harman; Robert J. Beynon; Lars Jelstrup Petersen; Stine Jacobsen
In horses, pathological healing with formation of exuberant granulation tissue (EGT) is a particular problem in limb wounds, whereas body wounds tend to heal without complications. Chronic inflammation has been proposed to be central to the pathogenesis of EGT. This study aimed to investigate levels of inflammatory acute phase proteins (APPs) in interstitial fluid from wounds in horses. A novel approach for absolute quantification of proteins, selected reaction monitoring (SRM)‐based mass spectrometry in combination with a quantification concatamer (QconCAT), was used for the quantification of five established equine APPs (fibrinogen, serum amyloid A, ceruloplasmin, haptoglobin, and plasminogen) and three proposed equine APPs (prothrombin, α‐2‐macroglobulin, and α‐1‐antitrypsin). Wound interstitial fluid was recovered by large pore microdialysis from experimental body and limb wounds from five horses at days 1, 2, 7, and 14 after wounding and healing without (body) and with (limb) the formation of EGT. The QconCAT included proteotypic peptides representing each of the protein targets and was used to direct the design of a gene, which was expressed in Escherichia coli in a media supplemented with stable isotopes for metabolically labeling of standard peptides. Co‐analysis of wound interstitial fluid samples with the stable isotope‐labeled QconCAT tryptic peptides in known amounts enabled quantification of the APPs in absolute terms. The concentrations of fibrinogen, haptoglobin, ceruloplasmin, prothrombin, and α‐1‐antitrypsin in dialysate from limb wounds were significantly higher than in dialysate from body wounds. This is the first report of simultaneous analysis of a panel of APPs using the QconCAT‐SRM technology. The microdialysis technique in combination with the QconCAT‐SRM‐based approach proved useful for quantification of the investigated proteins in the wound interstitial fluid, and the results indicated that there is a state of sustained inflammation in equine wounds healing with formation of EGT.
Molecular & Cellular Proteomics | 2017
Nobuaki Takemori; Ayako Takemori; Yuki Tanaka; Yaeta Endo; Jane L. Hurst; Guadalupe Gómez-Baena; Victoria M. Harman; Robert J. Beynon
A major challenge in proteomics is the absolute accurate quantification of large numbers of proteins. QconCATs, artificial proteins that are concatenations of multiple standard peptides, are well established as an efficient means to generate standards for proteome quantification. Previously, QconCATs have been expressed in bacteria, but we now describe QconCAT expression in a robust, cell-free system. The new expression approach rescues QconCATs that previously were unable to be expressed in bacteria and can reduce the incidence of proteolytic damage to QconCATs. Moreover, it is possible to cosynthesize QconCATs in a highly-multiplexed translation reaction, coexpressing tens or hundreds of QconCATs simultaneously. By obviating bacterial culture and through the gain of high level multiplexing, it is now possible to generate tens of thousands of standard peptides in a matter of weeks, rendering absolute quantification of a complex proteome highly achievable in a reproducible, broadly deployable system.
Biochemical Society Transactions | 2014
Robert J. Beynon; Dean E. Hammond; Victoria M. Harman; Yvonne Woolerton
The increasing acceptance that proteins may exert multiple functions in the cell brings with it new analytical challenges that will have an impact on the field of proteomics. Many proteomics workflows begin by destroying information about the interactions between different proteins, and the reduction of a complex protein mixture to constituent peptides also scrambles information about the combinatorial potential of post-translational modifications. To bring the focus of proteomics on to the domain of protein moonlighting will require novel analytical and quantitative approaches.