Victoria Majam
Naval Medical Research Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Victoria Majam.
Journal of Immunology | 2000
Martha Sedegah; Walter R. Weiss; John B. Sacci; Yupin Charoenvit; Richard C. Hedstrom; Kalpana Gowda; Victoria Majam; John A. Tine; Sanjai Kumar; Peter Hobart; Stephen L. Hoffman
Intramuscular immunization with a naked DNA plasmid expressing the Plasmodium yoelii circumsporozoite protein (pPyCSP) protects mice against challenge with P. yoelii sporozoites. This protection can be improved either by coadministration of a plasmid expressing murine GM-CSF (pGMCSF) or by boosting with recombinant poxvirus expressing the PyCSP. We now report that combining these two strategies, by first mixing the priming dose of pPyCSP with pGMCSF and then boosting with recombinant virus, can substantially increase vaccine effectiveness. Not only were immune responses and protection improved but the pPyCSP dose could be lowered from 100 μg to 1 μg with little loss of immunogenicity after boost with recombinant poxvirus. Comparing mice primed by the 1-μg doses of pPyCSP plus 1 μg pGMCSF with mice primed by 1-μg doses of pPyCSP alone, the former were better protected (60% vs 0) and had higher concentrations of Abs (titers of 163, 840 vs 5, 120 by indirect fluorescent Ab test against sporozoites), more ex vivo CTL activity (25% vs 7% specific lysis), and more IFN-γ-secreting cells by enzyme-linked immunospot assay (1460 vs 280 IFN-γ spot-forming cells/106 cells). Priming with plasmid vaccine plus pGMCSF and boosting with recombinant poxviruses strongly improves the immunogenicity and protective efficacy of DNA vaccination and allows for significant reduction of dose.
Vaccine | 2001
Joao C. Aguiar; Richard C. Hedstrom; William O. Rogers; Yupin Charoenvit; John B. Sacci; David E. Lanar; Victoria Majam; Richard Stout; Stephen L. Hoffman
We compared the needle free jet device device Biojector with syringe/needle as a method to administer a DNA vaccine encoding the Plasmodium falciparum circumsporozoite protein (PfCSP) in albino rabbits. A group of three rabbits was injected by the intramuscular (IM) route using a syringe/needle combination, a second group IM with the Biojector device and a third group both IM and intradermal (ID) using the Biojector. When animals were immunized with the Biojector IM or IM/ID as compared to the syringe/needle IM, we observed 10- and 50-fold greater antibody titers, as measured by enzyme immunoassay (EIA) and indirect fluorescence antibody test (IFAT), respectively. We also observed that the Biojector conferred a greater ability to prime the immune system as compared with the needle. The subsequent boosting of all animals with a recombinant canary pox virus (ALVAC) expressing PfCSP induced significantly higher titers in both Biojector groups of rabbits as compared with the needle and naive animals. These results provided the foundation for a clinical trial using the same regime.
Infection and Immunity | 2007
Anjali Yadava; Jetsumon Sattabongkot; Michael A. Washington; Lisa A. Ware; Victoria Majam; Hong Zheng; Sanjai Kumar; Christian F. Ockenhouse
ABSTRACT A successful vaccine against Plasmodium vivax malaria would significantly improve the health and quality of the lives of more than 1 billion people around the world. A subunit vaccine is the only option in the absence of long-term culture of P. vivax parasites. The circumsporozoite protein that covers the surface of Plasmodium sporozoites is one of the best-studied malarial antigens and the most promising vaccine in clinical trials. We report here the development of a novel “immunologically optimal” recombinant vaccine expressed in Escherichia coli that encodes a chimeric CS protein encompassing repeats from the two major alleles, VK210 and VK247. This molecule is widely recognized by sera from patients naturally exposed to P. vivax infection and induces a highly potent immune response in genetically disparate strains of mice. Antibodies from immunized animals recognize both VK210 and VK247 sporozoites. Furthermore, these antibodies appear to be protective in nature since they cause the agglutination of live sporozoites, an in vitro surrogate of sporozoite infectivity. These results strongly suggest that recombinant CS is biologically active and highly immunogenic across major histocompatibility complex strains and raises the prospect that in humans this vaccine may induce protective immune responses.
Infection and Immunity | 2002
Martha Sedegah; Gary T. Brice; William O. Rogers; Denise L. Doolan; Yupin Charoenvit; Trevor Jones; Victoria Majam; Arnel Belmonte; Minh Lu; Maria Belmonte; Daniel J. Carucci; Stephen L. Hoffman
ABSTRACT The persistence of immunity to malaria induced in mice by a heterologous DNA priming and poxvirus boosting regimen was characterized. Mice were immunized by priming with DNA vaccine plasmids encoding the Plasmodium yoelii circumsporozoite protein (PyCSP) and murine granulocyte-macrophage colony-stimulating factor and boosting with recombinant vaccinia encoding PyCSP. BALB/c mice immunized with either high-dose (100 μg of p PyCSP plus 30 μg of pGM-CSF) or low-dose (1 μg of p PyCSP plus 1 μg of pGM-CSF DNA) priming were protected against challenge with 50 P. yoelii sporozoites. Protection 2 weeks after immunization was 70 to 100%, persisted at this level for at least 20 weeks, and declined to 30 to 40% by 28 weeks. Eight of eight mice protected at 20 weeks were still protected when rechallenged at 40 weeks. The antigen (Ag)-specific effector CD8+-T-cell population present 2 weeks after boosting had ex vivo Ag-specific cytolytic activity, expressed both gamma interferon (IFN-γ) and tumor necrosis factor alpha, and constituted 12 to 20% of splenic CD8+ T cells. In contrast, the memory CD8+-Ag-specific-cell population at 28 weeks lacked cytolytic activity and constituted only 6% of splenic CD8+ T cells, but at the single-cell level it produced significantly higher levels of IFN-γ than the effectors. High levels of Ag- or parasite-specific antibodies present 2 weeks after boosting had declined three- to sevenfold by 28 weeks. Low-dose priming was similarly immunogenic and as protective as high-dose priming against a 50-, but not a 250-, sporozoite challenge. These results demonstrate that a heterologous priming and boosting vaccination can provide lasting protection against malaria in this model system.
Infection and Immunity | 2010
Babita Mahajan; Jay A. Berzofsky; Robert A. Boykins; Victoria Majam; Hong Zheng; Rana Chattopadhyay; Patricia de la Vega; J. Kathleen Moch; J. David Haynes; Igor M. Belyakov; Hira L. Nakhasi; Sanjai Kumar
ABSTRACT The multiple antigen peptide (MAP) approach is an effective method to chemically synthesize and deliver multiple T-cell and B-cell epitopes as the constituents of a single immunogen. Here we report on the design, chemical synthesis, and immunogenicity of three Plasmodium falciparum MAP vaccines that incorporated antigenic epitopes from the sporozoite, liver, and blood stages of the life cycle. Antibody and cellular responses were determined in three inbred (C57BL/6, BALB/c, and A/J) strains, one congenic (HLA-A2 on the C57BL/6 background) strain, and one outbred strain (CD1) of mice. All three MAPs were immunogenic and induced both antibody and cellular responses, albeit in a somewhat genetically restricted manner. Antibodies against MAP-1, MAP-2, and MAP-3 had an antiparasite effect that was also dependent on the mouse major histocompatibility complex background. Anti-MAP-1 (CSP-based) antibodies blocked the invasion of HepG2 liver cells by P. falciparum sporozoites (highest, 95.16% in HLA-A2 C57BL/6; lowest, 11.21% in BALB/c). Furthermore, antibodies generated following immunizations with the MAP-2 (PfCSP, PfLSA-1, PfMSP-142, and PfMSP-3b) and MAP-3 (PfRAP-1, PfRAP-2, PfSERA, and PfMSP-142) vaccines were able to reduce the growth of blood stage parasites in erythrocyte cultures to various degrees. Thus, MAP-based vaccines remain a viable option to induce effective antibody and cellular responses. These results warrant further development and preclinical and clinical testing of the next generation of candidate MAP vaccines that are based on the conserved protective epitopes from Plasmodium antigens that are widely recognized by populations of divergent HLA types from around the world.
Journal of Biological Chemistry | 2008
Babita Mahajan; Angamuthu Selvapandiyan; Noel Gerald; Victoria Majam; Hong Zheng; Thilan Wickramarachchi; Jawahar Tiwari; Hisashi Fujioka; J. Kathleen Moch; Nirbhay Kumar; L. Aravind; Hira L. Nakhasi; Sanjai Kumar
Molecules and cellular mechanisms that regulate the process of cell division in malaria parasites remain poorly understood. In this study we isolate and characterize the four Plasmodium falciparum centrins (PfCENs) and, by growth complementation studies, provide evidence for their involvement in cell division. Centrins are cytoskeleton proteins with key roles in cell division, including centrosome duplication, and possess four Ca2+-binding EF hand domains. By means of phylogenetic analysis, we were able to decipher the evolutionary history of centrins in eukaryotes with particular emphasis on the situation in apicomplexans and other alveolates. Plasmodium possesses orthologs of four distinct centrin paralogs traceable to the ancestral alveolate, including two that are unique to alveolates. By real time PCR and/or immunofluorescence, we determined the expression of PfCEN mRNA or protein in sporozoites, asexual blood forms, gametocytes, and in the oocysts developing inside mosquito mid-gut. Immunoelectron microscopy studies showed that centrin is expressed in close proximity with the nucleus of sporozoites and asexual schizonts. Furthermore, confocal and widefield microscopy using the double staining with α-tubulin and centrin antibodies strongly suggested that centrin is associated with the parasite centrosome. Following the episomal expression of the four PfCENs in a centrin knock-out Leishmania donovani parasite line that exhibited a severe growth defect, one of the PfCENs was able to partially restore Leishmania growth rate and overcome the defect in cytokinesis in such mutant cell line. To our knowledge, this study is the first characterization of a Plasmodium molecule that is involved in the process of cell division. These results provide the opportunity to further explore the role of centrins in cell division in malaria parasites and suggest novel targets to construct genetically modified, live attenuated malaria vaccines.
Transfusion | 2012
Babita Mahajan; Hong Zheng; Phuong Thao Pham; Mary Y. Sedegah; Victoria Majam; Namita Akolkar; Maria Rios; Isaac Ankrah; Parnor Madjitey; George Amoah; Ebenezer A. Addison; Isabella A. Quakyi; Sanjai Kumar
BACKGROUND: There is still a need to improve the sensitivity of polymerase chain reaction (PCR) tests for malaria to detect submicroscopic asexual stage Plasmodium infections during the early phase and chronic, asymptomatic phase of infection when the parasite burden is very low.
Infection and Immunity | 2008
Miranda S. Oakley; Thomas F. McCutchan; Vivek Anantharaman; Jerrold M. Ward; Laurence Faucette; Cindy R. Erexson; Babita Mahajan; Hong Zheng; Victoria Majam; L. Aravind; Sanjai Kumar
ABSTRACT Cerebral malaria (CM) is a primary cause of malaria-associated deaths among young African children. Yet no diagnostic tools are available that could be used to predict which of the children infected with Plasmodium falciparum malaria will progress to CM. We used the Plasmodium berghei ANKA murine model of experimental cerebral malaria (ECM) and high-density oligonucleotide microarray analyses to identify host molecules that are strongly associated with the clinical symptoms of ECM. Comparative expression analyses were performed with C57BL/6 mice, which have an ECM-susceptible phenotype, and with mice that have ECM-resistant phenotypes: CD8 knockout and perforin knockout mice on the C57BL/6 background and BALB/c mice. These analyses allowed the identification of more than 200 host molecules (a majority of which had not been identified previously) with altered expression patterns in the brain that are strongly associated with the manifestation of ECM. Among these host molecules, brain samples from mice with ECM expressed significantly higher levels of p21, metallothionein, and hemoglobin α1 proteins by Western blot analysis than mice unaffected by ECM, suggesting the possible utility of these molecules as prognostic biomarkers of CM in humans. We suggest that the higher expression of hemoglobin α1 in the brain may be associated with ECM and could be a source of excess heme, a molecule that is considered to trigger the pathogenesis of CM. Our studies greatly enhance the repertoire of host molecules for use as diagnostics and novel therapeutics in CM.
Human Vaccines & Immunotherapeutics | 2012
Thomas L. Richie; Yupin Charoenvit; Ruobing Wang; Judith E. Epstein; Richard C. Hedstrom; Sanjai Kumar; Thomas C. Luke; Daniel Freilich; Joao C. Aguiar; John B. Sacci; Martha Sedegah; Ronald A. Nosek; Patricia de la Vega; Mara P. Berzins; Victoria Majam; Esteban Abot; Harini Ganeshan; Nancy O. Richie; Jo Glenna Banania; Maria Fe Baraceros; Tanya G. Geter; Robin Mere; Lolita Bebris; Keith Limbach; Bradley W. Hickey; David E. Lanar; J. Ng; Meng Shi; Peter Hobart; Jon Norman
When introduced in the 1990s, immunization with DNA plasmids was considered potentially revolutionary for vaccine development, particularly for vaccines intended to induce protective CD8 T cell responses against multiple antigens. We conducted, in 1997−1998, the first clinical trial in healthy humans of a DNA vaccine, a single plasmid encoding Plasmodium falciparum circumsporozoite protein (PfCSP), as an initial step toward developing a multi-antigen malaria vaccine targeting the liver stages of the parasite. As the next step, we conducted in 2000–2001 a clinical trial of a five-plasmid mixture called MuStDO5 encoding pre-erythrocytic antigens PfCSP, PfSSP2/TRAP, PfEXP1, PfLSA1 and PfLSA3. Thirty-two, malaria-naïve, adult volunteers were enrolled sequentially into four cohorts receiving a mixture of 500 μg of each plasmid plus escalating doses (0, 20, 100 or 500 μg) of a sixth plasmid encoding human granulocyte macrophage-colony stimulating factor (hGM-CSF). Three doses of each formulation were administered intramuscularly by needle-less jet injection at 0, 4 and 8 weeks, and each cohort had controlled human malaria infection administered by five mosquito bites 18 d later. The vaccine was safe and well-tolerated, inducing moderate antigen-specific, MHC-restricted T cell interferon-γ responses but no antibodies. Although no volunteers were protected, T cell responses were boosted post malaria challenge. This trial demonstrated the MuStDO5 DNA and hGM-CSF plasmids to be safe and modestly immunogenic for T cell responses. It also laid the foundation for priming with DNA plasmids and boosting with recombinant viruses, an approach known for nearly 15 y to enhance the immunogenicity and protective efficacy of DNA vaccines.
PLOS ONE | 2009
Miranda S. Oakley; Victoria Majam; Babita Mahajan; Noel Gerald; Vivek Anantharaman; Jerrold M. Ward; Lawrence J. Faucette; Thomas F. McCutchan; Hong Zheng; Masaki Terabe; Jay A. Berzofsky; L. Aravind; Sanjai Kumar
An in-depth knowledge of the host molecules and biological pathways that contribute towards the pathogenesis of cerebral malaria would help guide the development of novel prognostics and therapeutics. Genome-wide transcriptional profiling of the brain tissue during experimental cerebral malaria (ECM ) caused by Plasmodium berghei ANKA parasites in mice, a well established surrogate of human cerebral malaria, has been useful in predicting the functional classes of genes involved and pathways altered during the course of disease. To further understand the contribution of individual genes to the pathogenesis of ECM, we examined the biological relevance of three molecules – CD14, galectin-3, and OX40 that were previously shown to be overexpressed during ECM. We find that CD14 plays a predominant role in the induction of ECM and regulation of parasite density; deletion of the CD14 gene not only prevented the onset of disease in a majority of susceptible mice (only 21% of CD14-deficient compared to 80% of wildtype mice developed ECM, p<0.0004) but also had an ameliorating effect on parasitemia (a 2 fold reduction during the cerebral phase). Furthermore, deletion of the galectin-3 gene in susceptible C57BL/6 mice resulted in partial protection from ECM (47% of galectin-3-deficient versus 93% of wildtype mice developed ECM, p<0.0073). Subsequent adherence assays suggest that galectin-3 induced pathogenesis of ECM is not mediated by the recognition and binding of galectin-3 to P. berghei ANKA parasites. A previous study of ECM has demonstrated that brain infiltrating T cells are strongly activated and are CD44+CD62L− differentiated memory T cells [1]. We find that OX40, a marker of both T cell activation and memory, is selectively upregulated in the brain during ECM and its distribution among CD4+ and CD8+ T cells accumulated in the brain vasculature is approximately equal.