Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Victoria Salem is active.

Publication


Featured researches published by Victoria Salem.


Cell Metabolism | 2011

The Gut Hormones PYY3-36 and GLP-17-36 amide Reduce Food Intake and Modulate Brain Activity in Appetite Centers in Humans

Akila De Silva; Victoria Salem; Christopher J. Long; Aidan Makwana; Rexford D. Newbould; Eugenii A. Rabiner; Mohammad A. Ghatei; Stephen R. Bloom; Paul M. Matthews; John D. Beaver; Waljit S. Dhillo

Summary Obesity is a major public health issue worldwide. Understanding how the brain controls appetite offers promising inroads toward new therapies for obesity. Peptide YY (PYY) and glucagon-like peptide 1 (GLP-1) are coreleased postprandially and reduce appetite and inhibit food intake when administered to humans. However, the effects of GLP-1 and the ways in which PYY and GLP-1 act together to modulate brain activity in humans are unknown. Here, we have used functional MRI to determine these effects in healthy, normal-weight human subjects and compared them to those seen physiologically following a meal. We provide a demonstration that the combined administration of PYY3-36 and GLP-17-36 amide to fasted human subjects leads to similar reductions in subsequent energy intake and brain activity, as observed physiologically following feeding.


The Journal of Clinical Endocrinology and Metabolism | 2009

Subcutaneous Injection of Kisspeptin-54 Acutely Stimulates Gonadotropin Secretion in Women with Hypothalamic Amenorrhea, But Chronic Administration Causes Tachyphylaxis

Channa N. Jayasena; Gurjinder Nijher; Owais B. Chaudhri; Kevin G. Murphy; Amita Ranger; Adrian Lim; Daksha Patel; Amrish Mehta; Catriona Todd; Victoria Salem; Gordon Stamp; Mandy Donaldson; Mohammad A. Ghatei; Stephen R. Bloom; Waljit S. Dhillo

BACKGROUND Kisspeptin is a critical regulator of normal reproductive function. A single injection of kisspeptin in healthy human volunteers potently stimulates gonadotropin release. However, the effects of kisspeptin on gonadotropin release in women with hypothalamic amenorrhea (HA) and the effects of repeated administration of kisspeptin to humans are unknown. AIM The aim of this study was to determine the effects of acute and chronic kisspeptin administration on gonadotropin release in women with HA. METHODS We performed a prospective, randomized, double-blinded, parallel design study. Women with HA received twice-daily sc injections of kisspeptin (6.4 nmol/kg) or 0.9% saline (n = 5 per group) for 2 wk. Changes in serum gonadotropin and estradiol levels, LH pulsatility, and ultrasound measurements of reproductive activity were assessed. RESULTS On the first injection day, potent increases in serum LH and FSH were observed after sc kisspeptin injection in women with HA (mean maximal increment from baseline within 4 h after injection: LH, 24.0 +/- 3.5 IU/liter; FSH, 9.1 +/- 2.5 IU/liter). These responses were significantly reduced on the 14th injection day (mean maximal increment from baseline within 4 h postinjection: LH, 2.5 +/- 2.2 IU/liter, P < 0.05; FSH, 0.5 +/- 0.5 IU/liter, P < 0.05). Subjects remained responsive to GnRH after kisspeptin treatment. No significant changes in LH pulsatility or ultrasound measurements of reproductive activity were observed. CONCLUSION Acute administration of kisspeptin to women with infertility due to HA potently stimulates gonadotropin release, but chronic administration of kisspeptin results in desensitization to its effects on gonadotropin release. These data have important implications for the development of kisspeptin as a novel therapy for reproductive disorders in humans.


Diabetes | 2013

Coadministration of Glucagon-Like Peptide-1 During Glucagon Infusion in Humans Results in Increased Energy Expenditure and Amelioration of Hyperglycemia

Tricia Tan; Benjamin C. T. Field; McCullough Ka; Rachel C. Troke; Edward S. Chambers; Victoria Salem; Juan Gonzalez Maffe; Kevin C. Baynes; Akila De Silva; Alexander Viardot; Ali Alsafi; Gary Frost; Mohammad A. Ghatei; Stephen R. Bloom

Glucagon and glucagon-like peptide (GLP)-1 are the primary products of proglucagon processing from the pancreas and gut, respectively. Giving dual agonists with glucagon and GLP-1 activity to diabetic, obese mice causes enhanced weight loss and improves glucose tolerance by reduction of food intake and by increase in energy expenditure (EE). We aimed to observe the effect of a combination of glucagon and GLP-1 on resting EE and glycemia in healthy human volunteers. In a randomized, double-blinded crossover study, 10 overweight or obese volunteers without diabetes received placebo infusion, GLP-1 alone, glucagon alone, and GLP-1 plus glucagon simultaneously. Resting EE—measured using indirect calorimetry—was not affected by GLP-1 infusion but rose significantly with glucagon alone and to a similar degree with glucagon and GLP-1 together. Glucagon infusion was accompanied by a rise in plasma glucose levels, but addition of GLP-1 to glucagon rapidly reduced this excursion, due to a synergistic insulinotropic effect. The data indicate that drugs with glucagon and GLP-1 agonist activity may represent a useful treatment for type 2 diabetes and obesity. Long-term studies are required to demonstrate that this combination will reduce weight and improve glycemia in patients.


Experimental Diabetes Research | 2012

The Use of Functional MRI to Study Appetite Control in the CNS

Akila De Silva; Victoria Salem; Paul M. Matthews; Waljit S. Dhillo

Functional magnetic resonance imaging (fMRI) has provided the opportunity to safely investigate the workings of the human brain. This paper focuses on its use in the field of human appetitive behaviour and its impact in obesity research. In the present absence of any safe or effective centrally acting appetite suppressants, a better understanding of how appetite is controlled is vital for the development of new antiobesity pharmacotherapies. Early functional imaging techniques revealed an attenuation of brain reward area activity in response to visual food stimuli when humans are fed—in other words, the physiological state of hunger somehow increases the appeal value of food. Later studies have investigated the action of appetite modulating hormones on the fMRI signal, showing how the attenuation of brain reward region activity that follows feeding can be recreated in the fasted state by the administration of anorectic gut hormones. Furthermore, differences in brain activity between obese and lean individuals have provided clues about the possible aetiology of overeating. The hypothalamus acts as a central gateway modulating homeostatic and nonhomeostatic drives to eat. As fMRI techniques constantly improve, functional data regarding the role of this small but hugely important structure in appetite control is emerging.


Journal of Obesity | 2011

Rimonabant: From RIO to Ban

Amir Sam; Victoria Salem; Mohammad A. Ghatei

Endocannabinoid antagonism as a treatment for obesity and the metabolic syndrome became a hugely anticipated area of pharmacology at the start of the century. The CB1 receptor antagonist Rimonabant entered the European mass market on the back of several trials showing weight loss benefits alongside improvements in numerous other elements of the metabolic syndrome. However, the drug was quickly withdrawn due to the emergence of significant side effects—notably severe mood disorders. This paper provides a brief overview of the Rimonabant story and places the recent spate of FDA rejections of other centrally acting weight loss drugs entering Phase 3 trials in this context.


Journal of Clinical Investigation | 2017

Kisspeptin modulates sexual and emotional brain processing in humans

Alexander Comninos; Matthew B. Wall; Lysia Demetriou; Amar Shah; Sophie Clarke; Shakunthala Narayanaswamy; Alexander Nesbitt; Chioma Izzi-Engbeaya; Julia K. Prague; Ali Abbara; Risheka Ratnasabapathy; Victoria Salem; Gurjinder Nijher; Channa N. Jayasena; Mark A. Tanner; Paul Bassett; Amrish Mehta; Eugenii A. Rabiner; Christoph Hönigsperger; Meire Ribeiro da Silva; Ole Kristian Brandtzaeg; Elsa Lundanes; Steven Ray Wilson; Rachel C. Brown; Sarah Thomas; Stephen R. Bloom; Waljit S. Dhillo

BACKGROUND. Sex, emotion, and reproduction are fundamental and tightly entwined aspects of human behavior. At a population level in humans, both the desire for sexual stimulation and the desire to bond with a partner are important precursors to reproduction. However, the relationships between these processes are incompletely understood. The limbic brain system has key roles in sexual and emotional behaviors, and is a likely candidate system for the integration of behavior with the hormonal reproductive axis. We investigated the effects of kisspeptin, a recently identified key reproductive hormone, on limbic brain activity and behavior. METHODS. Using a combination of functional neuroimaging and hormonal and psychometric analyses, we compared the effects of kisspeptin versus vehicle administration in 29 healthy heterosexual young men. RESULTS. We demonstrated that kisspeptin administration enhanced limbic brain activity specifically in response to sexual and couple-bonding stimuli. Furthermore, kisspeptin’s enhancement of limbic brain structures correlated with psychometric measures of reward, drive, mood, and sexual aversion, providing functional significance. In addition, kisspeptin administration attenuated negative mood. CONCLUSIONS. Collectively, our data provide evidence of an undescribed role for kisspeptin in integrating sexual and emotional brain processing with reproduction in humans. These results have important implications for our understanding of reproductive biology and are highly relevant to the current pharmacological development of kisspeptin as a potential therapeutic agent for patients with common disorders of reproductive function. FUNDING. National Institute for Health Research (NIHR), Wellcome Trust (Ref 080268), and the Medical Research Council (MRC).


The Journal of Clinical Endocrinology and Metabolism | 2014

Combination of Peptide YY3–36 with GLP-17–36 amide Causes an Increase in First-Phase Insulin Secretion after IV Glucose

Tricia Tan; Victoria Salem; Rachel C. Troke; Ali Alsafi; Benjamin C. T. Field; Akila De Silva; Shivani Misra; Kevin C. Baynes; Mandy Donaldson; James Minnion; Mohammad A. Ghatei; Ian F. Godsland; Stephen R. Bloom

Context: The combination of peptide YY (PYY) and glucagon-like peptide-1 (GLP-1) has been proposed as a potential treatment for diabetes and obesity. However, the combined effects of these hormones, PYY3–36 and GLP-17–36 amide, on glucose homeostasis are unknown. Objective: This study sought to investigate the acute effects of PYY3–36 and GLP-17–36 amide, individually and in combination, on insulin secretion and sensitivity. Setting and Design: Using a frequently sampled iv glucose tolerance test (FSIVGTT) and minimal modeling, this study measured the effects of PYY3–36 alone, GLP-17–36 amide alone, and a combination of PYY3–36 and GLP-17–36 amide on acute insulin response to glucose (AIRg) and insulin sensitivity index (SI) in 14 overweight human volunteers, studied in a clinical research facility. Results: PYY3–36 alone caused a small but nonsignificant increase in AIRg. GLP-17–36 amide alone and the combination of PYY3–36 and GLP-17–36 amide did increase AIRg significantly. No significant differences in SI were observed with any intervention. Conclusions: PYY3–36 lacks any significant acute effects on first-phase insulin secretion or SI when tested using an FSIVGTT. Both GLP-17–36 amide alone and the combination of PYY3–36 and GLP-17–36 amide increase first-phase insulin secretion. There does not seem to be any additive or synergistic effect between PYY3–36 and GLP-17–36 amide on first-phase insulin secretion. Neither hormone alone nor the combination had any significant effects on SI.


Expert Review of Clinical Pharmacology | 2010

Approaches to the pharmacological treatment of obesity

Victoria Salem; Stephen R. Bloom

Obesity is a global health crisis resulting in major morbidity and premature death. The need for safe and efficacious drug therapies is great, and presently unmet. The two drugs currently licensed in the USA for the long-term treatment of obesity, orlistat and sibutramine, provide only modest weight-loss benefits and are associated with high attrition rates owing to side effects. This review summarizes current concepts in the neuroendocrine control of energy homeostasis and major pharmacological treatments for obesity in the pipeline.


The Journal of Nuclear Medicine | 2017

Thermal imaging is a non-invasive alternative to PET-CT for measurement of brown adipose tissue activity in humans

James Law; David E. Morris; Chioma Izzi Engbeaya; Victoria Salem; Christopher Coello; Lindsay Robinson; Maduka Jayasinghe; Rebecca Scott; Roger N. Gunn; Eugenii A. Rabiner; Tricia Tan; Waljit S. Dhillo; Stephen R. Bloom; Helen Budge; Michael E. Symonds

Obesity and its metabolic consequences are a major cause of morbidity and mortality. Brown adipose tissue (BAT) utilizes glucose and free fatty acids to produce heat, thereby increasing energy expenditure. Effective evaluation of human BAT stimulators is constrained by the current standard method of assessing BAT—PET/CT—as it requires exposure to high doses of ionizing radiation. Infrared thermography (IRT) is a potential noninvasive, safe alternative, although direct corroboration with PET/CT has not been established. Methods: IRT and 18F-FDG PET/CT data from 8 healthy men subjected to water-jacket cooling were directly compared. Thermal images were geometrically transformed to overlay PET/CT-derived maximum intensity projection (MIP) images from each subject, and the areas with the most intense temperature and glucose uptake within the supraclavicular regions were compared. Relationships between supraclavicular temperatures (TSCR) from IRT and the metabolic rate of glucose uptake (MR(gluc)) from PET/CT were determined. Results: Glucose uptake on MR(gluc)MIP was found to correlate positively with a change in TSCR relative to a reference region (r2 = 0.721; P = 0.008). Spatial overlap between areas of maximal MR(gluc)MIP and maximal TSCR was 29.5% ± 5.1%. Prolonged cooling, for 60 min, was associated with a further TSCR rise, compared with cooling for 10 min. Conclusion: The supraclavicular hotspot identified on IRT closely corresponded to the area of maximal uptake on PET/CT-derived MR(gluc)MIP images. Greater increases in relative TSCR were associated with raised glucose uptake. IRT should now be considered a suitable method for measuring BAT activation, especially in populations for whom PET/CT is not feasible, practical, or repeatable.


European Journal of Endocrinology | 2015

IMAGING IN ENDOCRINOLOGY: The use of functional MRI to study the endocrinology of appetite

Victoria Salem; Waljit S. Dhillo

In the present review article, we summarise current thinking about the neuroendocrinology of appetite and feeding behaviour. We discuss how the homeostatic control of energy balance, wherein the hypothalamus orchestrates food intake and energy expenditure in response to peripheral signals about nutritional status, can be easily overridden by the powerful reward value of food. We focus on how functional magnetic resonance imaging has shed light on our understanding of the way hormones can interact with the brain to modulate appetite.

Collaboration


Dive into the Victoria Salem's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tricia Tan

Imperial College London

View shared research outputs
Top Co-Authors

Avatar

Waljit Dhillo

Imperial College Healthcare

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amrish Mehta

Imperial College Healthcare

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mandy Donaldson

Imperial College Healthcare

View shared research outputs
Researchain Logo
Decentralizing Knowledge