Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Victoria Wong is active.

Publication


Featured researches published by Victoria Wong.


Nature | 2012

Interaction landscape of membrane - protein complexes in Saccharomyces cerevisiae

Mohan Babu; James Vlasblom; Shuye Pu; Xinghua Guo; Chris Graham; Björn D. M. Bean; Helen E. Burston; Franco J. Vizeacoumar; Jamie Snider; Sadhna Phanse; Vincent Fong; Yuen Yi C. Tam; Michael Davey; Olha Hnatshak; Navgeet Bajaj; Shamanta Chandran; Thanuja Punna; Constantine Christopolous; Victoria Wong; Analyn Yu; Gouqing Zhong; Joyce Li; Igor Stagljar; Elizabeth Conibear; Andrew Emili; Jack Greenblatt

Macromolecular assemblies involving membrane proteins (MPs) serve vital biological roles and are prime drug targets in a variety of diseases. Large-scale affinity purification studies of soluble-protein complexes have been accomplished for diverse model organisms, but no global characterization of MP-complex membership has been described so far. Here we report a complete survey of 1,590 putative integral, peripheral and lipid-anchored MPs from Saccharomyces cerevisiae, which were affinity purified in the presence of non-denaturing detergents. The identities of the co-purifying proteins were determined by tandem mass spectrometry and subsequently used to derive a high-confidence physical interaction map encompassing 1,726 membrane protein–protein interactions and 501 putative heteromeric complexes associated with the various cellular membrane systems. Our analysis reveals unexpected physical associations underlying the membrane biology of eukaryotes and delineates the global topological landscape of the membrane interactome.


Nature Protocols | 2010

Detecting interactions with membrane proteins using a membrane two-hybrid assay in yeast

Jamie Snider; Saranya Kittanakom; Dunja Damjanovic; Jasna Curak; Victoria Wong; Igor Stagljar

The biological function of proteins may be predicted by identification of their interacting partners, and one of the major goals of the postgenomic era is the mapping of protein interaction networks. Membrane proteins are of particular interest because of their role in disease and because of their prevalence as major pharmaceutical targets. Unfortunately, because of their hydrophobic nature, they have long been difficult to study in a high-throughput format. A powerful technology recently developed to facilitate the characterization of membrane protein interactions is the membrane yeast two-hybrid (MYTH) assay. MYTH adapts the principle of split ubiquitin for use as a potent in vivo sensor of protein–protein interactions, allowing large-scale screening for interactors of full-length membrane proteins, from a range of organisms, using Saccharomyces cerevisiae as a host. In this article, we describe a protocol for MYTH bait generation, validation and library screening. The entire MYTH procedure can generally be completed in 4–6 weeks.


Molecular & Cellular Proteomics | 2008

Monitoring Protein-Protein Interactions between the Mammalian Integral Membrane Transporters and PDZ-interacting Partners Using a Modified Split-ubiquitin Membrane Yeast Two-hybrid System

Serge M. Gisler; Saranya Kittanakom; Daniel Guido Fuster; Victoria Wong; Mia Bertic; Tamara Radanovic; Randy A. Hall; Heini Murer; Jürg Biber; Daniel Markovich; Orson W. Moe; Igor Stagljar

PDZ-binding motifs are found in the C-terminal tails of numerous integral membrane proteins where they mediate specific protein-protein interactions by binding to PDZ-containing proteins. Conventional yeast two-hybrid screens have been used to probe protein-protein interactions of these soluble C termini. However, to date no in vivo technology has been available to study interactions between the full-length integral membrane proteins and their cognate PDZ-interacting partners. We previously developed a split-ubiquitin membrane yeast two-hybrid (MYTH) system to test interactions between such integral membrane proteins by using a transcriptional output based on cleavage of a transcription factor from the C terminus of membrane-inserted baits. Here we modified MYTH to permit detection of C-terminal PDZ domain interactions by redirecting the transcription factor moiety from the C to the N terminus of a given integral membrane protein thus liberating their native C termini. We successfully applied this “MYTH 2.0” system to five different mammalian full-length renal transporters and identified novel PDZ domain-containing partners of the phosphate (NaPi-IIa) and sulfate (NaS1) transporters that would have otherwise not been detectable. Furthermore this assay was applied to locate the PDZ-binding domain on the NaS1 protein. We showed that the PDZ-binding domain for PDZK1 on NaS1 is upstream of its C terminus, whereas the two interacting proteins, NHERF-1 and NHERF-2, bind at a location closer to the N terminus of NaS1. Moreover NHERF-1 and NHERF-2 increased functional sulfate uptake in Xenopus oocytes when co-expressed with NaS1. Finally we used MYTH 2.0 to demonstrate that the NaPi-IIa transporter homodimerizes via protein-protein interactions within the lipid bilayer. In summary, our study establishes the MYTH 2.0 system as a novel tool for interactive proteomics studies of membrane protein complexes.


Human Molecular Genetics | 2012

Identification of novel ATP13A2 interactors and their role in α-synuclein misfolding and toxicity

Marija Usenovic; Adam L. Knight; Arpita Ray; Victoria Wong; Kevin R. Brown; Guy A. Caldwell; Kim A. Caldwell; Igor Stagljar; Dimitri Krainc

Lysosomes are responsible for degradation and recycling of bulky cell material, including accumulated misfolded proteins and dysfunctional organelles. Increasing evidence implicates lysosomal dysfunction in several neurodegenerative disorders, including Parkinsons disease and related synucleinopathies, which are characterized by the accumulation of α-synuclein (α-syn) in Lewy bodies. Studies of lysosomal proteins linked to neurodegenerative disorders present an opportunity to uncover specific molecular mechanisms and pathways that contribute to neurodegeneration. Loss-of-function mutations in a lysosomal protein, ATP13A2 (PARK9), cause Kufor-Rakeb syndrome that is characterized by early-onset parkinsonism, pyramidal degeneration and dementia. While loss of ATP13A2 function plays a role in α-syn misfolding and toxicity, the normal function of ATP13A2 in the brain remains largely unknown. Here, we performed a screen to identify ATP13A2 interacting partners, as a first step toward elucidating its function. Utilizing a split-ubiquitin membrane yeast two-hybrid system that was developed to identify interacting partners of full-length integral membrane proteins, we identified 43 novel interactors that primarily implicate ATP13A2 in cellular processes such as endoplasmic reticulum (ER) translocation, ER-to-Golgi trafficking and vesicular transport and fusion. We showed that a subset of these interactors modified α-syn aggregation and α-syn-mediated degeneration of dopaminergic neurons in Caenorhabditis elegans, further suggesting that ATP13A2 and α-syn are functionally linked in neurodegeneration. These results implicate ATP13A2 in vesicular trafficking and provide a platform for further studies of ATP13A2 in neurodegeneration.


BMC Neuroscience | 2010

Interaction of the mu-opioid receptor with GPR177 (Wntless) inhibits Wnt secretion: potential implications for opioid dependence

Jay Jin; Saranya Kittanakom; Victoria Wong; Beverly A. S. Reyes; Elisabeth J. Van Bockstaele; Igor Stagljar; Wade H. Berrettini; Robert Levenson

BackgroundOpioid agonist drugs produce analgesia. However, long-term exposure to opioid agonists may lead to opioid dependence. The analgesic and addictive properties of opioid agonist drugs are mediated primarily via the mu-opioid receptor (MOR). Opioid agonists appear to alter neuronal morphology in key brain regions implicated in the development of opioid dependence. However, the precise role of the MOR in the development of these neuronal alterations remains elusive. We hypothesize that identifying and characterizing novel MOR interacting proteins (MORIPs) may help to elucidate the underlying mechanisms involved in the development of opioid dependence.ResultsGPR177, the mammalian ortholog of Drosophila Wntless/Evi/Sprinter, was identified as a MORIP in a modified split ubiquitin yeast two-hybrid screen. GPR177 is an evolutionarily conserved protein that plays a critical role in mediating Wnt protein secretion from Wnt producing cells. The MOR/GPR177 interaction was validated in pulldown, coimmunoprecipitation, and colocalization studies using mammalian tissue culture cells. The interaction was also observed in rodent brain, where MOR and GPR177 were coexpressed in close spatial proximity within striatal neurons. At the cellular level, morphine treatment caused a shift in the distribution of GPR177 from cytosol to the cell surface, leading to enhanced MOR/GPR177 complex formation at the cell periphery and the inhibition of Wnt protein secretion.ConclusionsIt is known that chronic morphine treatment decreases dendritic arborization and hippocampal neurogenesis, and Wnt proteins are essential for these processes. We therefore propose that the morphine-mediated MOR/GPR177 interaction may result in decreased Wnt secretion in the CNS, resulting in atrophy of dendritic arbors and decreased neurogenesis. Our results demonstrate a previously unrecognized role for GPR177 in regulating cellular response to opioid drugs.


Nature Chemical Biology | 2013

Mapping the functional yeast ABC transporter interactome

Jamie Snider; Asad Hanif; Mid Eum Lee; Ke Jin; Analyn Yu; Chris Graham; Matthew Chuk; Dunja Damjanovic; Marta Wierzbicka; Priscilla Tang; Dina Balderes; Victoria Wong; Matthew Jessulat; Katelyn Darowski; Bryan Joseph San Luis; Igor Shevelev; Stephen L. Sturley; Charles Boone; Jack Greenblatt; Zhaolei Zhang; Christian M. Paumi; Mohan Babu; Hay-Oak Park; Susan Michaelis; Igor Stagljar

ABC transporters are a ubiquitous class of integral membrane proteins of immense clinical interest because of their strong association with human disease and pharmacology. To improve our understanding of these proteins, we used Membrane Yeast Two-Hybrid (MYTH) technology to map the protein interactome of all non-mitochondrial ABC transporters in the model organism Saccharomy cescerevisiae, and combined this data with previously reported yeast ABC transporter interactions in the BioGRID database to generate a comprehensive, integrated interactome. We show that ABC transporters physically associate with proteins involved in a surprisingly diverse range of functions. We specifically examine the importance of the physical interactions of ABC transporters in both the regulation of one another and in the modulation of proteins involved in zinc homeostasis. The interaction network presented here will be a powerful resource for increasing our fundamental understanding of the cellular role and regulation of ABC transporters.


Methods of Molecular Biology | 2009

Analysis of Membrane Protein Complexes Using the Split-Ubiquitin Membrane Yeast Two-Hybrid System

Saranya Kittanakom; Matthew Chuk; Victoria Wong; Jamie Snyder; Dawn Edmonds; Apostolos Lydakis; Zhaolei Zhang; Daniel Auerbach; Igor Stagljar

Recent research has begun to elucidate the global network of cytosolic and membrane protein interactions. The resulting interactome map facilitates numerous biological studies, including those for cell signalling, protein trafficking and protein regulation. Due to the hydrophobic nature of membrane proteins such as tyrosine kinases, G-protein coupled receptors, membrane bound phosphatases and transporters it is notoriously difficult to study their relationship to signaling molecules, the cytoskeleton, or any other interacting partners. Although conventional yeast-two hybrid is a simple and robust technique that is effective in the identification of specific protein-protein interactions, it is limited in its use for membrane proteins. However, the split-ubiquitin membrane based yeast two-hybrid assay (MYTH) has been described as a tool that allows for the identification of membrane protein interactions. In the MYTH system, ubiquitin has been split into two halves, each of which is fused to a protein, at least one of which is membrane bound. Upon interaction of these two proteins, the two halves of ubiquitin are reconstituted and a transcription factor that is fused to the membrane protein is released. The transcription factor then enters the nucleus and activates transcription of reporter genes. Currently, large-scale MYTH screens using cDNA or gDNA libraries are performed to identify and map the binding partners of various membrane proteins. Thus, the MYTH system is proving to be a powerful tool for the elucidation of specific protein-protein interactions, contributing greatly to the mapping of the membrane protein interactome.


PLOS ONE | 2013

MOR Is Not Enough: Identification of Novel mu-Opioid Receptor Interacting Proteins Using Traditional and Modified Membrane Yeast Two-Hybrid Screens

Jessica Petko; Stephanie Justice-Bitner; Jay Jin; Victoria Wong; Saranya Kittanakom; Thomas N. Ferraro; Igor Stagljar; Robert Levenson

The mu-opioid receptor (MOR) is the G-protein coupled receptor primarily responsible for mediating the analgesic and rewarding properties of opioid agonist drugs such as morphine, fentanyl, and heroin. We have utilized a combination of traditional and modified membrane yeast two-hybrid screening methods to identify a cohort of novel MOR interacting proteins (MORIPs). The interaction between the MOR and a subset of MORIPs was validated in pulldown, co-immunoprecipitation, and co-localization studies using HEK293 cells stably expressing the MOR as well as rodent brain. Additionally, a subset of MORIPs was found capable of interaction with the delta and kappa opioid receptors, suggesting that they may represent general opioid receptor interacting proteins (ORIPS). Expression of several MORIPs was altered in specific mouse brain regions after chronic treatment with morphine, suggesting that these proteins may play a role in response to opioid agonist drugs. Based on the known function of these newly identified MORIPs, the interactions forming the MOR signalplex are hypothesized to be important for MOR signaling and intracellular trafficking. Understanding the molecular complexity of MOR/MORIP interactions provides a conceptual framework for defining the cellular mechanisms of MOR signaling in brain and may be critical for determining the physiological basis of opioid tolerance and addiction.


Molecular Cell | 2017

A Global Analysis of the Receptor Tyrosine Kinase-Protein Phosphatase Interactome

Zhong Yao; Katelyn Darowski; Nicole St-Denis; Victoria Wong; Fabian Offensperger; Annabel Villedieu; Shahreen Amin; Ramy H. Malty; Hiroyuki Aoki; Hongbo Guo; Yang Xu; Caterina Iorio; Max Kotlyar; Andrew Emili; Igor Jurisica; Benjamin G. Neel; Mohan Babu; Anne-Claude Gingras; Igor Stagljar

Receptor tyrosine kinases (RTKs) and protein phosphatases comprise protein families that play crucial roles in cell signaling. We used two protein-protein interaction (PPI) approaches, the membrane yeast two-hybrid (MYTH) and the mammalian membrane two-hybrid (MaMTH), to map the PPIs between human RTKs and phosphatases. The resulting RTK-phosphatase interactome reveals a considerable number of previously unidentified interactions and suggests specific roles for different phosphatase families. Additionally, the differential PPIs of some protein tyrosine phosphatases (PTPs) and their mutants suggest diverse mechanisms of these PTPs in the regulation of RTK signaling. We further found that PTPRH and PTPRB directly dephosphorylate EGFR and repress its downstream signaling. By contrast, PTPRA plays a dual role in EGFR signaling: besides facilitating EGFR dephosphorylation, it enhances downstream ERK signaling by activating SRC. This comprehensive RTK-phosphatase interactome study provides a broad and deep view of RTK signaling.


Journal of Pineal Research | 2016

Protein interactome mining defines melatonin MT1 receptors as integral component of presynaptic protein complexes of neurons

Abla Benleulmi-Chaachoua; Lina Chen; Kate Sokolina; Victoria Wong; Igor Jurisica; M. B. Emerit; Michèle Darmon; Almudena Espin; Igor Stagljar; Petra Tafelmeyer; Gerald W. Zamponi; Philippe Delagrange; Pascal Maurice; Ralf Jockers

In mammals, the hormone melatonin is mainly produced by the pineal gland with nocturnal peak levels. Its peripheral and central actions rely either on its intrinsic antioxidant properties or on binding to melatonin MT1 and MT2 receptors, belonging to the G protein‐coupled receptor (GPCR) super‐family. Melatonin has been reported to be involved in many functions of the central nervous system such as circadian rhythm regulation, neurotransmission, synaptic plasticity, memory, sleep, and also in Alzheimers disease and depression. However, little is known about the subcellular localization of melatonin receptors and the molecular aspects involved in neuronal functions of melatonin. Identification of protein complexes associated with GPCRs has been shown to be a valid approach to improve our understanding of their function. By combining proteomic and genomic approaches we built an interactome of MT1 and MT2 receptors, which comprises 378 individual proteins. Among the proteins interacting with MT1, but not with MT2, we identified several presynaptic proteins, suggesting a potential role of MT1 in neurotransmission. Presynaptic localization of MT1 receptors in the hypothalamus, striatum, and cortex was confirmed by subcellular fractionation experiments and immunofluorescence microscopy. MT1 physically interacts with the voltage‐gated calcium channel Cav2.2 and inhibits Cav2.2‐promoted Ca2+ entry in an agonist‐independent manner. In conclusion, we show that MT1 is part of the presynaptic protein network and negatively regulates Cav2.2 activity, providing a first hint for potential synaptic functions of MT1.

Collaboration


Dive into the Victoria Wong's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert Levenson

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Max Kotlyar

Princess Margaret Cancer Centre

View shared research outputs
Researchain Logo
Decentralizing Knowledge