Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Victoria Youngblood is active.

Publication


Featured researches published by Victoria Youngblood.


Journal of Clinical Investigation | 2009

Identification of FGFR4-activating mutations in human rhabdomyosarcomas that promote metastasis in xenotransplanted models

James G. Taylor Vi; Adam Cheuk; Patricia S. Tsang; Joon-Yong Chung; Young K. Song; Krupa Desai; Yanlin Yu; Qing-Rong Chen; Kushal Shah; Victoria Youngblood; Jun Fang; Su Young Kim; Choh Yeung; Lee J. Helman; Arnulfo Mendoza; Vu N. Ngo; Louis M. Staudt; Jun S. Wei; Chand Khanna; Daniel Catchpoole; Stephen J. Qualman; Stephen M. Hewitt; Glenn Merlino; Stephen J. Chanock; Javed Khan

Rhabdomyosarcoma (RMS) is a childhood cancer originating from skeletal muscle, and patient survival is poor in the presence of metastatic disease. Few determinants that regulate metastasis development have been identified. The receptor tyrosine kinase FGFR4 is highly expressed in RMS tissue, suggesting a role in tumorigenesis, although its functional importance has not been defined. Here, we report the identification of mutations in FGFR4 in human RMS tumors that lead to its activation and present evidence that it functions as an oncogene in RMS. Higher FGFR4 expression in RMS tumors was associated with advanced-stage cancer and poor survival, while FGFR4 knockdown in a human RMS cell line reduced tumor growth and experimental lung metastases when the cells were transplanted into mice. Moreover, 6 FGFR4 tyrosine kinase domain mutations were found among 7 of 94 (7.5%) primary human RMS tumors. The mutants K535 and E550 increased autophosphorylation, Stat3 signaling, tumor proliferation, and metastatic potential when expressed in a murine RMS cell line. These mutants also transformed NIH 3T3 cells and led to an enhanced metastatic phenotype. Finally, murine RMS cell lines expressing the K535 and E550 FGFR4 mutants were substantially more susceptible to apoptosis in the presence of a pharmacologic FGFR inhibitor than the control cell lines expressing the empty vector or wild-type FGFR4. Together, our results demonstrate that mutationally activated FGFR4 acts as an oncogene, and these are what we believe to be the first known mutations in a receptor tyrosine kinase in RMS. These findings support the potential therapeutic targeting of FGFR4 in RMS.


Journal of Clinical Investigation | 2014

Genetic and pharmacologic inhibition of EPHA2 promotes apoptosis in NSCLC

Katherine R. Amato; Shan Wang; Andrew K. Hastings; Victoria Youngblood; Pranav Santapuram; Haiying Chen; Justin M. Cates; Daniel C. Colvin; Fei Ye; Dana M. Brantley-Sieders; Rebecca S. Cook; Li Tan; Nathanael S. Gray; Jin Chen

Genome-wide analyses determined previously that the receptor tyrosine kinase (RTK) EPHA2 is commonly overexpressed in non-small cell lung cancers (NSCLCs). EPHA2 overexpression is associated with poor clinical outcomes; therefore, EPHA2 may represent a promising therapeutic target for patients with NSCLC. In support of this hypothesis, here we have shown that targeted disruption of EphA2 in a murine model of aggressive Kras-mutant NSCLC impairs tumor growth. Knockdown of EPHA2 in human NSCLC cell lines reduced cell growth and viability, confirming the epithelial cell autonomous requirements for EPHA2 in NSCLCs. Targeting EPHA2 in NSCLCs decreased S6K1-mediated phosphorylation of cell death agonist BAD and induced apoptosis. Induction of EPHA2 knockdown within established NSCLC tumors in a subcutaneous murine model reduced tumor volume and induced tumor cell death. Furthermore, an ATP-competitive EPHA2 RTK inhibitor, ALW-II-41-27, reduced the number of viable NSCLC cells in a time-dependent and dose-dependent manner in vitro and induced tumor regression in human NSCLC xenografts in vivo. Collectively, these data demonstrate a role for EPHA2 in the maintenance and progression of NSCLCs and provide evidence that ALW-II-41-27 effectively inhibits EPHA2-mediated tumor growth in preclinical models of NSCLC.


Molecular and Cellular Biology | 2015

Regulation of Endothelial Cell Proliferation and Vascular Assembly through Distinct mTORC2 Signaling Pathways

Shan Wang; Katherine R. Amato; Wenqiang Song; Victoria Youngblood; Keunwook Lee; Mark Boothby; Dana M. Brantley-Sieders; Jin Chen

ABSTRACT Mammalian target of rapamycin (mTOR) is a serine/threonine kinase that regulates a diverse array of cellular processes, including cell growth, survival, metabolism, and cytoskeleton dynamics. mTOR functions in two distinct complexes, mTORC1 and mTORC2, whose activities and substrate specificities are regulated by complex specific cofactors, including Raptor and Rictor, respectively. Little is known regarding the relative contribution of mTORC1 versus mTORC2 in vascular endothelial cells. Using mouse models of Raptor or Rictor gene targeting, we discovered that Rictor ablation inhibited vascular endothelial growth factor (VEGF)-induced endothelial cell proliferation and assembly in vitro and angiogenesis in vivo, whereas the loss of Raptor had only a modest effect on endothelial cells (ECs). Mechanistically, the loss of Rictor reduced the phosphorylation of AKT, protein kinase Cα (PKCα), and NDRG1 without affecting the mTORC1 pathway. In contrast, the loss of Raptor increased the phosphorylation of AKT despite inhibiting the phosphorylation of S6K1, a direct target of mTORC1. Reconstitution of Rictor-null cells with myristoylated AKT (Myr-AKT) rescued vascular assembly in Rictor-deficient endothelial cells, whereas PKCα rescued proliferation defects. Furthermore, tumor neovascularization in vivo was significantly decreased upon EC-specific Rictor deletion in mice. These data indicate that mTORC2 is a critical signaling node required for VEGF-mediated angiogenesis through the regulation of AKT and PKCα in vascular endothelial cells.


American Journal of Hematology | 2014

A GCH1 haplotype confers sex-specific susceptibility to pain crises and altered endothelial function in adults with sickle cell anemia.

Inna Belfer; Victoria Youngblood; Deepika S. Darbari; Zhengyuan Wang; Lena Diaw; Lita Freeman; Krupa Desai; Michael Dizon; Darlene Allen; Colin Cunnington; Keith M. Channon; Jacqueline N. Milton; Stephen W. Hartley; Vikki G. Nolan; Gregory J. Kato; Martin H. Steinberg; David Goldman; Vi James G. Taylor

GTP cyclohydrolase (GCH1) is rate limiting for tetrahydrobiopterin (BH4) synthesis, where BH4 is a cofactor for nitric oxide (NO) synthases and aromatic hydroxylases. GCH1 polymorphisms are implicated in the pathophysiology of pain, but have not been investigated in African populations. We examined GCH1 and pain in sickle cell anemia where GCH1 rs8007267 was a risk factor for pain crises in discovery (n = 228; odds ratio [OR] 2.26; P = 0.009) and replication (n = 513; OR 2.23; P = 0.004) cohorts. In vitro, cells from sickle cell anemia subjects homozygous for the risk allele produced higher BH4. In vivo physiological studies of traits likely to be modulated by GCH1 showed rs8007267 is associated with altered endothelial dependent blood flow in females with SCA (8.42% of variation; P = 0.002). The GCH1 pain association is attributable to an African haplotype with where its sickle cell anemia pain association is limited to females (OR 2.69; 95% CI 1.21–5.94; P = 0.01) and has the opposite directional association described in Europeans independent of global admixture. The presence of a GCH1 haplotype with high BH4 in populations of African ancestry could explain the association of rs8007267 with sickle cell anemia pain crises. The vascular effects of GCH1 and BH4 may also have broader implications for cardiovascular disease in populations of African ancestry. Am. J. Hematol. 89:187–193, 2014.


Cancer Research | 2016

The Ephrin-A1/EPHA2 Signaling Axis Regulates Glutamine Metabolism in HER2-Positive Breast Cancer

Victoria Youngblood; Laura Kim; Deanna N. Edwards; Yoonha Hwang; Pranav Santapuram; Steven M. Stirdivant; Pengcheng Lu; Fei Ye; Dana M. Brantley-Sieders; Jin Chen

Dysregulation of receptor tyrosine kinases (RTK) contributes to cellular transformation and cancer progression by disrupting key metabolic signaling pathways. The EPHA2 RTK is overexpressed in aggressive forms of breast cancer, including the HER2(+) subtype, and correlates with poor prognosis. However, the role of EPHA2 in tumor metabolism remains unexplored. In this study, we used in vivo and in vitro models of HER2-overexpressing breast cancer to investigate the mechanisms by which EPHA2 ligand-independent signaling promotes tumorigenesis in the absence of its prototypic ligand, ephrin-A1. We demonstrate that ephrin-A1 loss leads to upregulated glutamine metabolism and lipid accumulation that enhanced tumor growth. Global metabolic profiling of ephrin-A1-null, HER2-overexpressing mammary tumors revealed a significant increase in glutaminolysis, a critical metabolic pathway that generates intermediates for lipogenesis. Pharmacologic inhibition of glutaminase activity reduced tumor growth in both ephrin-A1-depleted and EPHA2-overexpressing tumor allografts in vivo Mechanistically, we show that the enhanced proliferation and glutaminolysis in the absence of ephrin-A1 were attributed to increased RhoA-dependent glutaminase activity. EPHA2 depletion or pharmacologic inhibition of Rho, glutaminase, or fatty acid synthase abrogated the increased lipid content and proliferative effects of ephrin-A1 knockdown. Together, these findings highlight a novel, unsuspected connection between the EPHA2/ephrin-A1 signaling axis and tumor metabolism, and suggest potential new therapeutic targets in cancer subtypes exhibiting glutamine dependency. Cancer Res; 76(7); 1825-36. ©2016 AACR.


Molecular Cancer Research | 2015

Elevated Slit2 Activity Impairs VEGF-Induced Angiogenesis and Tumor Neovascularization in EphA2-Deficient Endothelium

Victoria Youngblood; Shan Wang; Wenqiang Song; Debra Walter; Yoonha Hwang; Jin Chen; Dana M. Brantley-Sieders

Angiogenic remodeling during embryonic development and in adult tissue homeostasis is orchestrated by cooperative signaling between several distinct molecular pathways, which are often exploited by tumors. Indeed, tumors upregulate proangiogenic molecules while simultaneously suppressing angiostatic pathways to recruit blood vessels for growth, survival, and metastatic spread. Understanding how cancers exploit proangiogenic and antiangiogenic signals is a key step in developing new, molecularly targeted antiangiogenic therapies. While EphA2, a receptor tyrosine kinase (RTK), is required for VEGF-induced angiogenesis, the mechanism through which these pathways intersect remains unclear. Slit2 expression is elevated in EphA2-deficient endothelium, and here it is reported that inhibiting Slit activity rescues VEGF-induced angiogenesis in cell culture and in vivo, as well as VEGF-dependent tumor angiogenesis, in EphA2-deficient endothelial cells and animals. Moreover, blocking Slit activity or Slit2 expression in EphA2-deficient endothelial cells restores VEGF-induced activation of Src and Rac, both of which are required for VEGF-mediated angiogenesis. These data suggest that EphA2 suppression of Slit2 expression and Slit angiostatic activity enables VEGF-induced angiogenesis in vitro and in vivo, providing a plausible mechanism for impaired endothelial responses to VEGF in the absence of EphA2 function. Implications: Modulation of angiostatic factor Slit2 by EphA2 receptor regulates endothelial responses to VEGF-mediated angiogenesis and tumor neovascularization. Mol Cancer Res; 13(3); 524–37. ©2014 AACR.


Oncogene | 2017

Targeting EphA2 impairs cell cycle progression and growth of basal-like/triple-negative breast cancers

Wenqiang Song; Yoonha Hwang; Victoria Youngblood; Rebecca S. Cook; Justin M. Balko; Jin Chen; Dana M. Brantley-Sieders

Basal-like/triple-negative breast cancers (TNBCs) are among the most aggressive forms of breast cancer, and disproportionally affects young premenopausal women and women of African descent. Patients with TNBC suffer a poor prognosis due in part to a lack of molecularly targeted therapies, which represents a critical barrier for effective treatment. Here, we identify EphA2 receptor tyrosine kinase as a clinically relevant target for TNBC. EphA2 expression is enriched in the basal-like molecular subtype in human breast cancers. Loss of EphA2 function in both human and genetically engineered mouse models of TNBC reduced tumor growth in culture and in vivo. Mechanistically, targeting EphA2 impaired cell cycle progression through S-phase via downregulation of c-Myc and stabilization of the cyclin-dependent kinase inhibitor p27/KIP1. A small molecule kinase inhibitor of EphA2 effectively suppressed tumor cell growth in vivo, including TNBC patient-derived xenografts. Thus, our data identify EphA2 as a novel molecular target for TNBC.


PLOS ONE | 2016

LIM-Only Protein 4 (LMO4) and LIM Domain Binding Protein 1 (LDB1) Promote Growth and Metastasis of Human Head and Neck Cancer (LMO4 and LDB1 in Head and Neck Cancer).

Elizabeth A. Simonik; Ying Cai; Katherine N. Kimmelshue; Dana M. Brantley-Sieders; Holli A. Loomans; Claudia D. Andl; Grant Westlake; Victoria Youngblood; Jin Chen; Wendell G. Yarbrough; Brandee T. Brown; Lalitha Nagarajan; Stephen J. Brandt

Squamous cell carcinoma of the head and neck (HNSCC) accounts for more than 300,000 deaths worldwide per year as a consequence of tumor cell invasion of adjacent structures or metastasis. LIM-only protein 4 (LMO4) and LIM-domain binding protein 1 (LDB1), two directly interacting transcriptional adaptors that have important roles in normal epithelial cell differentiation, have been associated with increased metastasis, decreased differentiation, and shortened survival in carcinoma of the breast. Here, we implicate two LDB1-binding proteins, single-stranded binding protein 2 (SSBP2) and 3 (SSBP3), in controlling LMO4 and LDB1 protein abundance in HNSCC and in regulating specific tumor cell functions in this disease. First, we found that the relative abundance of LMO4, LDB1, and the two SSBPs correlated very significantly in a panel of human HNSCC cell lines. Second, expression of these proteins in tumor primaries and lymph nodes involved by metastasis were concordant in 3 of 3 sets of tissue. Third, using a Matrigel invasion and organotypic reconstruct assay, CRISPR/Cas9-mediated deletion of LDB1 in the VU-SCC-1729 cell line, which is highly invasive of basement membrane and cellular monolayers, reduced tumor cell invasiveness and migration, as well as proliferation on tissue culture plastic. Finally, inactivation of the LDB1 gene in these cells decreased growth and vascularization of xenografted human tumor cells in vivo. These data show that LMO4, LDB1, and SSBP2 and/or SSBP3 regulate metastasis, proliferation, and angiogenesis in HNSCC and provide the first evidence that SSBPs control LMO4 and LDB1 protein abundance in a cancer context.


Molecular Cancer Therapeutics | 2015

Abstract A12: Genetic and pharmacologic inhibition of EPHA2 promotes apoptosis in NSCLC

Katherine R. Amato; Shan Wang; Andrew K. Hastings; Victoria Youngblood; Pranav Santapuram; Haiying Chen; Justin M. Cates; Daniel C. Colvin; Fei Ye; Dana M. Brantley-Sieders; Rebecca S. Cook; Li Tan; Nathanael S. Gray; Jin Chen

Genome-wide analyses determined previously that the receptor tyrosine kinase (RTK) EPHA2 is commonly overexpressed in non-small cell lung cancers (NSCLCs). EPHA2 overexpression is associated with poor clinical outcomes; therefore, EPHA2 may represent a promising therapeutic target for patients with NSCLC. In support of this hypothesis, we have shown that targeted disruption of EPHA2 in a murine model of aggressive KRAS-mutant NSCLC impairs tumor growth. Knockdown of EPHA2 in human NSCLC cell lines reduced cell growth and viability, confirming the epithelial cell autonomous requirements for EPHA2 in NSCLCs. Targeting EPHA2 in NSCLCs decreased S6K1-mediated phosphorylation of cell death agonist BAD and induced apoptosis. Furthermore, an ATP-competitive EPHA2 RTK inhibitor, ALW-II-41-27, reduced the number of viable NSCLC cells in a time-dependent and dose-dependent manner in vitro and induced tumor regression in human NSCLC xenografts in vivo. Collectively, these data demonstrate a role for EPHA2 in the maintenance and progression of NSCLCs and provide evidence that ALW-II-41-27 effectively inhibits EPHA2-mediated tumor growth in preclinical models of NSCLC. Citation Format: Katherine Amato, Shan Wang, Andrew Hastings, Victoria Youngblood, Pranav Santapuram, Haiying Chen, Justin Cates, Daniel Colvin, Fei Ye, Dana Brantley-Sieders, Rebecca Cook, Li Tan, Nathanael Gray, Jin Chen. Genetic and pharmacologic inhibition of EPHA2 promotes apoptosis in NSCLC. [abstract]. In: Proceedings of the AACR Special Conference: Targeting the PI3K-mTOR Network in Cancer; Sep 14-17, 2014; Philadelphia, PA. Philadelphia (PA): AACR; Mol Cancer Ther 2015;14(7 Suppl):Abstract nr A12.


Blood | 2009

A GCH1 Haplotype Associated with Susceptibility to Vasoocclusive Pain and Impaired Vascular Function in Sickle Cell Anemia.

James G. Taylor; Inna Belfer; Krupa Desai; Victoria Youngblood; Lita Freeman; Deepika S. Darbari; Gregory J. Kato; Jacqueline N. Milton; Stephen W. Hartley; Martin H. Steinberg; David Goldman; Mitchell B. Max

Collaboration


Dive into the Victoria Youngblood's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jin Chen

Vanderbilt University

View shared research outputs
Top Co-Authors

Avatar

Shan Wang

Vanderbilt University

View shared research outputs
Top Co-Authors

Avatar

Fei Ye

Vanderbilt University

View shared research outputs
Top Co-Authors

Avatar

James G. Taylor

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Krupa Desai

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge