Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vidhyashankar Ramamurthy is active.

Publication


Featured researches published by Vidhyashankar Ramamurthy.


Structure | 2012

Structures of adnectin/protein complexes reveal an expanded binding footprint.

Vidhyashankar Ramamurthy; Stanley R. Krystek; Alexander Bush; Anzhi Wei; Stuart Emanuel; Ruchira Das Gupta; Ahsen Janjua; Lin Cheng; Melissa Murdock; Bozena Abramczyk; Daniel Cohen; Zheng Lin; Paul E. Morin; Jonathan Davis; Michael Dabritz; Douglas C. McLaughlin; Katie A. Russo; Ginger Chao; Martin C. Wright; Victoria Jenny; Linda Engle; Eric Furfine; Steven Sheriff

Adnectins are targeted biologics derived from the tenth type III domain of human fibronectin (¹⁰Fn3), a member of the immunoglobulin superfamily. Target-specific binders are selected from libraries generated by diversifying the three ¹⁰Fn3 loops that are analogous to the complementarity determining regions of antibodies. The crystal structures of two Adnectins were determined, each in complex with its therapeutic target, EGFR or IL-23. Both Adnectins bind different epitopes than those bound by known monoclonal antibodies. Molecular modeling suggests that some of these epitopes might not be accessible to antibodies because of the size and concave shape of the antibody combining site. In addition to interactions from the Adnectin diversified loops, residues from the N terminus and/or the β strands interact with the target proteins in both complexes. Alanine-scanning mutagenesis confirmed the calculated binding energies of these β strand interactions, indicating that these nonloop residues can expand the available binding footprint.


Journal of Medicinal Chemistry | 2014

Tetrahydroquinoline derivatives as potent and selective factor XIa inhibitors.

Mimi L. Quan; Pancras C. Wong; Cailan Wang; Francis J. Woerner; Joanne M. Smallheer; Frank A. Barbera; Jeffrey M. Bozarth; Randi L. Brown; Mark R. Harpel; Joseph M. Luettgen; Paul E. Morin; Tara L. Peterson; Vidhyashankar Ramamurthy; Alan R. Rendina; Karen A. Rossi; Carol A. Watson; Anzhi Wei; Ge Zhang; Dietmar A. Seiffert; Ruth R. Wexler

Antithrombotic agents that are inhibitors of factor XIa (FXIa) have the potential to demonstrate robust efficacy with a low bleeding risk profile. Herein, we describe a series of tetrahydroquinoline (THQ) derivatives as FXIa inhibitors. Compound 1 was identified as a potent and selective tool compound for proof of concept studies. It exhibited excellent antithrombotic efficacy in rabbit thrombosis models and did not prolong bleeding times. This demonstrates proof of concept for the FXIa mechanism in animal models with a reversible, small molecule inhibitor.


Bioorganic & Medicinal Chemistry Letters | 2011

Synthesis and SAR of indole-and 7-azaindole-1,3-dicarboxamide hydroxyethylamine inhibitors of BACE-1.

Mendi A. Higgins; F. Christopher Zusi; Yunhui Zhang; Michael F. Dee; Michael F. Parker; Jodi K. Muckelbauer; Daniel M. Camac; Paul E. Morin; Vidhyashankar Ramamurthy; Andrew J. Tebben; Kimberley A. Lentz; James E. Grace; Jovita Marcinkeviciene; Lisa M. Kopcho; Catherine R. Burton; Donna M. Barten; Jeremy H. Toyn; Jere E. Meredith; Charles F. Albright; Joanne J. Bronson; John E. Macor; Lorin A. Thompson

Heterocyclic replacement of the isophthalamide phenyl ring in hydroxyethylamine (HEA) BACE-1 inhibitors was explored. A variety of indole-1,3-dicarboxamide HEAs exhibited potent BACE-1 enzyme inhibition, but displayed poor cellular activity. Improvements in cellular activity and aspartic protease selectivity were observed for 7-azaindole-1,3-dicarboxamide HEAs. A methylprolinol-bearing derivative (10n) demonstrated robust reductions in rat plasma Aβ levels, but did not lower rat brain Aβ due to poor central exposure. The same analog exhibited a high efflux ratio in a bidirectional Caco-2 assay and was likely a substrate of the efflux transporter P-glycoprotein. X-ray crystal structures are reported for two indole HEAs in complex with BACE-1.


Archives of Biochemistry and Biophysics | 2003

Comparative studies of active site–ligand interactions among various recombinant constructs of human β-amyloid precursor protein cleaving enzyme

Lisa M. Kopcho; Jianhong Ma; Jovita Marcinkeviciene; Zhihong Lai; Mark R. Witmer; Janet Cheng; Joseph Yanchunas; Jeffrey Tredup; Martin J. Corbett; Deepa Calambur; Michael Wittekind; Manjula Paruchuri; Dharti Kothari; Grace Lee; Subinay Ganguly; Vidhyashankar Ramamurthy; Paul E. Morin; Daniel M. Camac; Robert W King; Amy L Lasut; O Harold Ross; Milton C Hillman; Barbara Fish; Keqiang Shen; Randine L. Dowling; Young Bun Kim; Nilsa R. Graciani; Dale Collins; Andrew P. Combs; Henry J. George

Amyloid precursor protein (APP) cleaving enzyme (BACE) is the enzyme responsible for beta-site cleavage of APP, leading to the formation of the amyloid-beta peptide that is thought to be pathogenic in Alzheimers disease (AD). Hence, BACE is an attractive pharmacological target, and numerous research groups have begun searching for potent and selective inhibitors of this enzyme as a potential mechanism for therapeutic intervention in AD. The mature enzyme is composed of a globular catalytic domain that is N-linked glycosylated in mammalian cells, a single transmembrane helix that anchors the enzyme to an intracellular membrane, and a short C-terminal domain that extends outside the phospholipid bilayer of the membrane. Here we have compared the substrate and active site-directed inhibitor binding properties of several recombinant constructs of human BACE. The constructs studied here address the importance of catalytic domain glycosylation state, inclusion of domains other than the catalytic domain, and incorporation into a membrane bilayer on the interactions of the enzyme active site with peptidic ligands. We find no significant differences in ligand binding properties among these various constructs. These data demonstrate that the nonglycosylated, soluble catalytic domain of BACE faithfully reflects the ligand binding properties of the full-length mature enzyme in its natural membrane environment. Thus, the use of the nonglycosylated, soluble catalytic domain of BACE is appropriate for studies aimed at understanding the determinants of ligand recognition by the enzyme active site.


Journal of Medicinal Chemistry | 2014

Phenylimidazoles as Potent and Selective Inhibitors of Coagulation Factor XIa with in Vivo Antithrombotic Activity

Jon J. Hangeland; Todd J. Friends; Karen A. Rossi; Joanne M. Smallheer; Cailan Wang; Zhong Sun; James R. Corte; Tianan Fang; Pancras C. Wong; Alan R. Rendina; Frank A. Barbera; Jeffrey M. Bozarth; Joseph M. Luettgen; Carol A. Watson; Ge Zhang; Anzhi Wei; Vidhyashankar Ramamurthy; Paul E. Morin; Gregory S. Bisacchi; Srinath Subramaniam; Piramanayagam Arunachalam; Arvind Mathur; Dietmar A. Seiffert; Ruth R. Wexler; Mimi L. Quan

Novel inhibitors of FXIa containing an (S)-2-phenyl-1-(4-phenyl-1H-imidazol-2-yl)ethanamine core have been optimized to provide compound 16b, a potent, reversible inhibitor of FXIa (Ki = 0.3 nM) having in vivo antithrombotic efficacy in the rabbit AV-shunt thrombosis model (ID50 = 0.6 mg/kg + 1 mg kg(-1) h(-1)). Initial analog selection was informed by molecular modeling using compounds 11a and 11h overlaid onto the X-ray crystal structure of tetrahydroquinoline 3 complexed to FXIa. Further optimization was achieved by specific modifications derived from careful analysis of the X-ray crystal structure of the FXIa/11h complex. Compound 16b was well tolerated and enabled extensive pharmacologic evaluation of the FXIa mechanism up to the ID90 for thrombus inhibition.


Bioorganic & Medicinal Chemistry Letters | 2015

Pyridine and pyridinone-based factor XIa inhibitors.

James R. Corte; Tianan Fang; Jon J. Hangeland; Todd J. Friends; Alan R. Rendina; Joseph M. Luettgen; Jeffrey M. Bozarth; Frank A. Barbera; Karen A. Rossi; Anzhi Wei; Vidhyashankar Ramamurthy; Paul E. Morin; Dietmar Seiffert; Ruth R. Wexler; Mimi L. Quan

The structure-activity relationships (SAR) of six-membered ring replacements for the imidazole ring scaffold is described. This work led to the discovery of the potent and selective pyridine (S)-23 and pyridinone (±)-24 factor XIa inhibitors. SAR and X-ray crystal structure data highlight the key differences between imidazole and six-membered ring analogs.


Bioorganic & Medicinal Chemistry Letters | 2016

Novel phenylalanine derived diamides as Factor XIa inhibitors.

Leon M Smith; Michael J. Orwat; Zilun Hu; Wei Han; Cailan Wang; Karen A. Rossi; Paul J. Gilligan; Kumar Balashanmuga Pabbisetty; Honey Osuna; James R. Corte; Alan R. Rendina; Joseph M. Luettgen; Pancras C. Wong; Ranga Narayanan; Timothy W. Harper; Jeffrey M. Bozarth; Earl J. Crain; Anzhi Wei; Vidhyashankar Ramamurthy; Paul E. Morin; Baomin Xin; Joanna Zheng; Dietmar Seiffert; Mimi L. Quan; Patrick Y.S. Lam; Ruth R. Wexler; Donald J. P. Pinto

The synthesis, structural activity relationships (SAR), and selectivity profile of a potent series of phenylalanine diamide FXIa inhibitors will be discussed. Exploration of P1 prime and P2 prime groups led to the discovery of compounds with high FXIa affinity, good potency in our clotting assay (aPPT), and high selectivity against a panel of relevant serine proteases as exemplified by compound 21. Compound 21 demonstrated good in vivo efficacy (EC50=2.8μM) in the rabbit electrically induced carotid arterial thrombosis model (ECAT).


Journal of Molecular Biology | 2016

Functional Antagonism of Human CD40 Achieved by Targeting a Unique Species-Specific Epitope.

Aaron P. Yamniuk; Anish Suri; Stanley R. Krystek; James Tamura; Vidhyashankar Ramamurthy; Robert Kuhn; Karen Carroll; Catherine A. Fleener; Rolf Ryseck; Lin Cheng; Yongmi An; Philip Drew; Steven Grant; Suzanne J. Suchard; Steven G. Nadler; James W. Bryson; Steven Sheriff

Current clinical anti-CD40 biologic agents include both antagonist molecules for the treatment of autoimmune diseases and agonist molecules for immuno-oncology, yet the relationship between CD40 epitope and these opposing biological outcomes is not well defined. This report describes the identification of potent antagonist domain antibodies (dAbs) that bind to a novel human CD40-specific epitope that is divergent in the CD40 of nonhuman primates. A similarly selected anti-cynomolgus CD40 dAb recognizing the homologous epitope is also a potent antagonist. Mutagenesis, biochemical, and X-ray crystallography studies demonstrate that the epitope is distinct from that of CD40 agonists. Both the human-specific and cynomolgus-specific molecules remain pure antagonists even when formatted as bivalent Fc-fusion proteins, making this an attractive therapeutic format for targeting hCD40 in autoimmune indications.


Bioorganic & Medicinal Chemistry | 2016

Orally bioavailable pyridine and pyrimidine-based Factor XIa inhibitors: Discovery of the methyl N-phenyl carbamate P2 prime group

James R. Corte; Tianan Fang; Donald J. P. Pinto; Michael J. Orwat; Alan R. Rendina; Joseph M. Luettgen; Karen A. Rossi; Anzhi Wei; Vidhyashankar Ramamurthy; Joseph E. Myers; Steven Sheriff; Rangaraj Narayanan; Timothy W. Harper; Joanna J. Zheng; Yi-Xin Li; Dietmar Seiffert; Ruth R. Wexler; Mimi L. Quan

Pyridine-based Factor XIa (FXIa) inhibitor (S)-2 was optimized by modifying the P2 prime, P1, and scaffold regions. This work resulted in the discovery of the methyl N-phenyl carbamate P2 prime group which maintained FXIa activity, reduced the number of H-bond donors, and improved the physicochemical properties compared to the amino indazole P2 prime moiety. Compound (S)-17 was identified as a potent and selective FXIa inhibitor that was orally bioavailable. Replacement of the basic cyclohexyl methyl amine P1 in (S)-17 with the neutral p-chlorophenyltetrazole P1 resulted in the discovery of (S)-24 which showed a significant improvement in oral bioavailability compared to the previously reported imidazole (S)-23. Additional improvements in FXIa binding affinity, while maintaining oral bioavailability, was achieved by replacing the pyridine scaffold with either a regioisomeric pyridine or pyrimidine ring system.


Acta Crystallographica Section F-structural Biology and Crystallization Communications | 2015

The structure of the death receptor 4-TNF-related apoptosis-inducing ligand (DR4-TRAIL) complex.

Vidhyashankar Ramamurthy; Aaron P. Yamniuk; Eric Lawrence; Wei Yong; Lumelle A. Schneeweis; Lin Cheng; Melissa Murdock; Martin J. Corbett; Michael L. Doyle; Steven Sheriff

The structure of death receptor 4 (DR4) in complex with TNF-related apoptosis-inducing ligand (TRAIL) has been determined at 3 Å resolution and compared with those of previously determined DR5-TRAIL complexes. Consistent with the high sequence similarity between DR4 and DR5, the overall arrangement of the DR4-TRAIL complex does not differ substantially from that of the DR5-TRAIL complex. However, subtle differences are apparent. In addition, solution interaction studies were carried out that show differences in the thermodynamics of binding DR4 or DR5 with TRAIL.

Collaboration


Dive into the Vidhyashankar Ramamurthy's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge