Vidita A. Vaidya
Tata Institute of Fundamental Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Vidita A. Vaidya.
The Journal of Neuroscience | 1997
Vidita A. Vaidya; Gerard J. Marek; George K. Aghajanian; Ronald S. Duman
The influence of 5-HT receptor agonists on the expression of BDNF in brain was determined. Administration of a hallucinogenic 5-HT2A /2C receptor agonist, but not a 5-HT1A receptor agonist, resulted in a significant but differential regulation of BDNF mRNA levels in hippocampus and neocortex. In the hippocampus, the 5-HT2A /2C receptor agonist significantly decreased BDNF mRNA expression in the dentate gyrus granule cell layer but did not influence expression of the neurotrophin in the CA subfields. In parietal cortex and other neocortical areas, but not piriform cortex, the 5-HT2A /2C receptor agonist dramatically increased the expression of BDNF mRNA. The effect of the 5-HT2A /2Creceptor agonist on BDNF mRNA in both the hippocampus and the neocortex was blocked by pretreatment with a selective 5-HT2A, but not 5-HT2C, receptor antagonist. The expression of BDNF mRNA in the hippocampus is reported to be decreased by stress, raising the possibility that the 5-HT2A receptor mediates this effect. Pretreatment with ketanserin, a 5-HT2A /2Creceptor antagonist, significantly blocked the stress-induced downregulation of BDNF mRNA in hippocampus, in support of this hypothesis. The results of this study raise the possibility that regulation of BDNF expression by hallucinogenic 5-HT2Areceptor agonists leads to adaptations of synaptic strength in the hippocampus and the neocortex that may mediate some of the acute and long-term behavioral effects of these agents.
Neuroscience | 1999
Vidita A. Vaidya; F. Du; Ronald S. Duman
Stress, which can precipitate and exacerbate depression, causes atrophy and in severe cases death of hippocampal neurons. Atrophy of the hippocampus has also been observed in patients suffering from recurrent major depression. The present study examines the influence of electroconvulsive seizures, one of the most effective treatments for depression, on the morphology and survival of hippocampal neurons. The results demonstrate that chronic administration of electroconvulsive seizures induces sprouting of the granule cell mossy fiber pathway in the hippocampus. This sprouting is dependent on repeated administration of electroconvulsive seizures, reaches a maximum 12 days after the last treatment and is long lasting (i.e. up to six months). Electroconvulsive seizure-induced sprouting occurs in the absence of neuronal loss, indicating that sprouting is not a compensatory response to cell death. This is different from the sprouting induced by kindling or excitotoxin treatment, which induce cell death along with recurrent seizures. Electroconvulsive seizure-induced sprouting is significantly diminished in brain-derived neurotrophic factor heterozygote knockout mice, indicating that this neurotrophic factor contributes to mossy fiber sprouting. However, infusion of brain-derived neurotrophic factor into the hippocampus does not induce sprouting of the mossy fiber pathway. The results demonstrate that chronic administration of electroconvulsive seizures induces mossy fiber sprouting and suggest that increased expression of brain-derived neurotrophic factor is necessary, but not sufficient for the induction of this sprouting. Although the functional consequences remain unclear, sprouting of the mossy fiber pathway would appear to oppose the actions of stress and could thereby contribute to the therapeutic actions of electroconvulsive seizure therapy.
Journal of Ect | 1998
Ronald S. Duman; Vidita A. Vaidya
Recent studies have begun to examine the influence of electroconvulsive shock (ECS) on the expression of growth factors in brain, as well as alterations in the function and structure of certain populations of neurons. These studies demonstrate that long-term ECS increases the expression of brain-derived neurotrophic factor (BDNF) and its receptor, TrkB, in limbic brain regions. BDNF, a member of the nerve growth-factor family, has been shown to increase the synaptic strength, survival, and growth of adult neurons. Studies in vivo and in cultured cells indicate that the induction of BDNF and TrkB is mediated by the cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB), a transcription factor that is activated by cAMP and Ca2+ intracellular pathways. Chronic ECS is also reported to induce sprouting of hippocampal neurons, and studies in BDNF mutant mice indicated that this sprouting is partially dependent on upregulation of BDNF. Increased expression of BDNF and sprouting could also contribute to the altered electrophysiologic properties of hippocampal neurons. These effects of chronic ECS are discussed with respect to recent studies demonstrating that the pathophysiology of stress and depression involves atrophy or death of hippocampal neurons. This work has led to the hypothesis that ECS and antidepressant drugs, via regulation of neurotrophic factors, reverse the atrophy of stress-vulnerable neurons or protect these neurons from further damage.
European Journal of Neuroscience | 2002
Vaishali A. Kulkarni; Shanker Jha; Vidita A. Vaidya
The dentate gyrus region retains the ability to generate neurons throughout adulthood. A few studies have examined the neurotransmitter regulation of adult hippocampal neurogenesis and have shown that this process is regulated by serotonin and glutamate. Given the strong noradrenergic innervation of the adult hippocampus and the ability of norepinephrine to influence proliferation during development, we examined the influence of norepinephrine on adult hippocampal neurogenesis. Our study indicates that depletion of norepinephrine by the selective noradrenergic neurotoxin, N‐(2‐chloroethyl)‐N‐ethyl‐2‐bromo benzylamine hydrochloride (DSP‐4), results in a 63% reduction in the proliferation of dentate gyrus progenitor cells identified through 5‐bromo‐2′‐deoxyuridine (BrdU) labelling. In contrast, the survival of BrdU‐positive cells labelled prior to treatment with DSP‐4 is not influenced by norepinephrine depletion. The differentiation of BrdU labelled progenitors into neurons or glia was also not sensitive to noradrenergic depletion. These results indicate that the proliferation, but not the survival or differentiation, of adult hippocampal granule cell progenitors is affected by norepinephrine depletion.
Neuropsychopharmacology | 2007
Amrita R. Nair; Krishna C. Vadodaria; Sunayana B. Banerjee; Madhurima Benekareddy; Brian G. Dias; Ronald S. Duman; Vidita A. Vaidya
Stress regulation of brain-derived neurotrophic factor (BDNF) is implicated in the hippocampal damage observed in depression. BDNF has a complex gene structure with four 5′ untranslated exons (I–IV) with unique promoters, and a common 3′ coding exon (V). To better understand the stress regulation of BDNF, we addressed whether distinct stressors differentially regulate exon-specific BDNF transcripts in the postnatal and adult hippocampus. The early life stress of maternal separation (MS) resulted in a time point-dependent differential upregulation of BDNF transcripts restricted to early postnatal life (P14-BDNF II, P21-BDNF IV, V). In adulthood, distinct stressors regulated BDNF transcripts in a signature manner. Immobilization stress, administered once, decreased all BDNF splice variants but had differing effects on BDNF I/II (increase) and III/IV (decrease) when administered chronically. Although immobilization stress reduced BDNF (V) mRNA, chronic unpredictable stress did not influence total BDNF despite altering specific BDNF transcripts. Furthermore, a prior history of MS altered the signature pattern in which adult-onset stress regulated specific BDNF transcripts. We also examined the expression of cyclic AMP response element-binding protein (CREB), an upstream transcriptional activator of BDNF, and observed a CREB induction in the postnatal hippocampus following MS. As a possible consequence of enhanced CREB and BDNF expression following MS, we examined hippocampal progenitor proliferation and observed a significant increase restricted to early life. These results suggest that alterations in CREB/BDNF may contribute to the generation of individual differences in stress neurocircuitry, providing a substrate for altered vulnerability to depressive disorders.
Molecular and Cellular Neuroscience | 2005
Lynette A. Desouza; Uma Ladiwala; Sarah M. Daniel; Shubhada Agashe; Rama Vaidya; Vidita A. Vaidya
We have examined the influence of thyroid hormone on adult hippocampal neurogenesis, which encompasses the proliferation, survival and differentiation of dentate granule cell progenitors. Using bromodeoxyuridine (BrdU), we demonstrate that adult-onset hypothyroidism significantly decreases hippocampal neurogenesis. This decline is predominantly the consequence of a significant decrease in the survival and neuronal differentiation of BrdU-positive cells. Both the decreased survival and neuronal differentiation of hippocampal progenitors could be rescued by restored euthyroid status. Adult-onset hyperthyroidism did not influence hippocampal neurogenesis, suggesting that the effects of thyroid hormone may be optimally permissive at euthyroid levels. Our in vivo and in vitro results revealed that adult hippocampal progenitors express thyroid receptor isoforms. The in vitro studies demonstrate that adult hippocampal progenitors exhibit enhanced proliferation, survival and glial differentiation in response to thyroid hormone. These results support a role for thyroid hormone in the regulation of adult hippocampal neurogenesis and raise the possibility that altered neurogenesis may contribute to the cognitive and behavioral deficits associated with adult-onset hypothyroidism.
Neuroscience Letters | 1999
Vidita A. Vaidya; Rose Z. Terwilliger; Ronald S. Duman
Immobilization stress decreases the expression of BDNF mRNA in the rat hippocampus, and this effect could contribute to the atrophy of hippocampal neurons. This study examines the influence of selective 5-HT, as well as norepinephrine, receptor antagonists on the stress-induced down-regulation of BDNF mRNA. Pretreatment with a selective 5-HT2A receptor antagonist, MDL100,907, significantly blocked the influence of stress on expression of BDNF mRNA. In contrast, pretreatment with either a selective 5-HT2C or 5-HT1A receptor antagonist did not influence the stress-induced decrease in levels of BDNF mRNA. The stress-induced decrease was also not influenced by pretreatment with antagonists of beta(1/2)- or alpha1-adrenergic, or CRF-R1 receptors. The results demonstrate that 5-HT2A receptors mediate, at least in part, the stress-induced down-regulation of BDNF expression in the rat hippocampus.
Biological Psychiatry | 2013
Deepika Suri; Vandana Veenit; Ambalika Sarkar; Devi Thiagarajan; Arvind Kumar; Eric J. Nestler; Sanjeev Galande; Vidita A. Vaidya
BACKGROUND Adult-onset stressors exert opposing effects on hippocampal neurogenesis and cognition, with enhancement observed following mild stress and dysfunction following severe chronic stress. While early life stress evokes persistent changes in anxiety, it is unknown whether early stress differentially regulates hippocampal neurogenesis, trophic factor expression, and cognition across the life span. METHODS Hippocampal-dependent cognitive behavior, neurogenesis, and epigenetic regulation of brain-derived neurotrophic factor (Bdnf) expression was examined at distinct time points across the life span in rats subjected to the early stress of maternal separation (ES) and control groups. We also examined the influence of chronic antidepressant treatment on the neurogenic, neurotrophic, and cognitive changes in middle-aged ES animals. RESULTS Animals subjected to early stress of maternal separation examined during postnatal life and young adulthood exhibited enhanced hippocampal neurogenesis, decreased repressive histone methylation at the Bdnf IV promoter along with enhanced BDNF levels, and improved performance on the stress-associated Morris water maze. Strikingly, opposing changes in hippocampal neurogenesis and epigenetic regulation of Bdnf IV expression, concomitant with impairments on hippocampal-dependent cognitive tasks, were observed in middle-aged ES animals. Chronic antidepressant treatment with amitriptyline attenuated the maladaptive neurogenic, epigenetic, transcriptional, and cognitive effects in middle-aged ES animals. CONCLUSIONS Our study provides novel insights into the short- and long-term consequences of ES, demonstrating both biphasic and unique, age-dependent changes at the molecular, epigenetic, neurogenic, and behavioral levels. These results indicate that early stress may transiently endow animals with a potential adaptive advantage in stressful environments but across a life span is associated with long-term deleterious effects.
Neuroscience | 2013
Deepika Suri; Vidita A. Vaidya
Glucocorticoids serve as key stress response hormones that facilitate stress coping. However, sustained glucocorticoid exposure is associated with adverse consequences on the brain, in particular within the hippocampus. Chronic glucocorticoid exposure evokes neuronal cell damage and dendritic atrophy, reduces hippocampal neurogenesis and impairs synaptic plasticity. Glucocorticoids also alter expression and signaling of the neurotrophin, brain-derived neurotrophic factor (BDNF). Since BDNF is known to promote neuroplasticity, enhance cell survival, increase hippocampal neurogenesis and cellular excitability, it has been hypothesized that specific adverse effects of glucocorticoids may be mediated by attenuating BDNF expression and signaling. The purpose of this review is to summarize the current state of literature examining the influence of glucocorticoids on BDNF, and to address whether specific effects of glucocorticoids arise through perturbation of BDNF signaling. We integrate evidence of glucocorticoid regulation of BDNF at multiple levels, spanning from the well-documented glucocorticoid-induced changes in BDNF mRNA to studies examining alterations in BDNF receptor-mediated signaling. Further, we delineate potential lines of future investigation to address hitherto unexplored aspects of the influence of glucocorticoids on BDNF. Finally, we discuss the current understanding of the contribution of BDNF to the modulation of structural and functional plasticity by glucocorticoids, in particular in the context of the hippocampus. Understanding the mechanistic crosstalk between glucocorticoids and BDNF holds promise for the identification of potential therapeutic targets for disorders associated with the dysfunction of stress hormone pathways.
Journal of Biosciences | 2006
Amrita R. Nair; Vidita A. Vaidya
Depression is the major psychiatric ailment of our times, afflicting ∼20% of the population. Despite its prevalence, the pathophysiology of this complex disorder is not well understood. In addition, although antidepressants have been in existence for the past several decades, the mechanisms that underlie their therapeutic effects remain elusive. Building evidence implicates a role for the plasticity of specific neuro-circuitry in both the pathophysiology and treatment of depression. Damage to limbic regions is thought to contribute to the etiology of depression and antidepressants have been reported to reverse such damage and promote adaptive plasticity. The molecular pathways that contribute to the damage associated with depression and antidepressant-mediated plasticity are a major focus of scientific enquiry. The transcription factor cyclic AMP response element binding protein (CREB) and the neurotrophin brain-derived neurotrophic factor (BDNF) are targets of diverse classes of antidepressants and are known to be regulated in animal models and in patients suffering from depression. Given their role in neuronal plasticity, CREB and BDNF have emerged as molecules that may play an important role in modulating mood. The purpose of this review is to discuss the role of CREB and BDNF in depression and as targets/mediators of antidepressant action.