Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vidya Velagapudi is active.

Publication


Featured researches published by Vidya Velagapudi.


Nature Medicine | 2010

Hypothalamic AMPK and fatty acid metabolism mediate thyroid regulation of energy balance

Miguel López; Luis M. Varela; María J. Vázquez; Sergio Rodriguez-Cuenca; Cr Gonzalez; Vidya Velagapudi; Donald A. Morgan; Erik Schoenmakers; Khristofor Agassandian; Ricardo Lage; Pablo B. Martínez de Morentin; Sulay Tovar; Ruben Nogueiras; David Carling; Christopher J. Lelliott; Rosalía Gallego; Matej Orešič; Krishna Chatterjee; Asish K. Saha; Kamal Rahmouni; Carlos Dieguez; Antonio Vidal-Puig

Thyroid hormones have widespread cellular effects; however it is unclear whether their effects on the central nervous system (CNS) contribute to global energy balance. Here we demonstrate that either whole-body hyperthyroidism or central administration of triiodothyronine (T3) decreases the activity of hypothalamic AMP-activated protein kinase (AMPK), increases sympathetic nervous system (SNS) activity and upregulates thermogenic markers in brown adipose tissue (BAT). Inhibition of the lipogenic pathway in the ventromedial nucleus of the hypothalamus (VMH) prevents CNS-mediated activation of BAT by thyroid hormone and reverses the weight loss associated with hyperthyroidism. Similarly, inhibition of thyroid hormone receptors in the VMH reverses the weight loss associated with hyperthyroidism. This regulatory mechanism depends on AMPK inactivation, as genetic inhibition of this enzyme in the VMH of euthyroid rats induces feeding-independent weight loss and increases expression of thermogenic markers in BAT. These effects are reversed by pharmacological blockade of the SNS. Thus, thyroid hormone–induced modulation of AMPK activity and lipid metabolism in the hypothalamus is a major regulator of whole-body energy homeostasis.


Journal of Lipid Research | 2010

The gut microbiota modulates host energy and lipid metabolism in mice

Vidya Velagapudi; Rahil Hezaveh; Christopher S. Reigstad; Peddinti Gopalacharyulu; Laxman Yetukuri; Sama Islam; Jenny Felin; Rosie Perkins; Jan Borén; Matej Orešič; Fredrik Bäckhed

The gut microbiota has recently been identified as an environmental factor that may promote metabolic diseases. To investigate the effect of gut microbiota on host energy and lipid metabolism, we compared the serum metabolome and the lipidomes of serum, adipose tissue, and liver of conventionally raised (CONV-R) and germ-free mice. The serum metabolome of CONV-R mice was characterized by increased levels of energy metabolites, e.g., pyruvic acid, citric acid, fumaric acid, and malic acid, while levels of cholesterol and fatty acids were reduced. We also showed that the microbiota modified a number of lipid species in the serum, adipose tissue, and liver, with its greatest effect on triglyceride and phosphatidylcholine species. Triglyceride levels were lower in serum but higher in adipose tissue and liver of CONV-R mice, consistent with increased lipid clearance. Our findings show that the gut microbiota affects both host energy and lipid metabolism and highlights its role in the development of metabolic diseases.


Diabetes | 2011

Differential Lipid Partitioning Between Adipocytes and Tissue Macrophages Modulates Macrophage Lipotoxicity and M2/M1 Polarization in Obese Mice

Xavier Prieur; Crystal Y.L. Mok; Vidya Velagapudi; Vanessa Núñez; Lucía Fuentes; David Montaner; Ko Ishikawa; Alberto Camacho; Nuria Barbarroja; Stephen O’Rahilly; Jaswinder K. Sethi; Joaquín Dopazo; Matej Orešič; Mercedes Ricote; Antonio Vidal-Puig

OBJECTIVE Obesity-associated insulin resistance is characterized by a state of chronic, low-grade inflammation that is associated with the accumulation of M1 proinflammatory macrophages in adipose tissue. Although different evidence explains the mechanisms linking the expansion of adipose tissue and adipose tissue macrophage (ATM) polarization, in the current study we investigated the concept of lipid-induced toxicity as the pathogenic link that could explain the trigger of this response. RESEARCH DESIGN AND METHODS We addressed this question using isolated ATMs and adipocytes from genetic and diet-induced murine models of obesity. Through transcriptomic and lipidomic analysis, we created a model integrating transcript and lipid species networks simultaneously occurring in adipocytes and ATMs and their reversibility by thiazolidinedione treatment. RESULTS We show that polarization of ATMs is associated with lipid accumulation and the consequent formation of foam cell–like cells in adipose tissue. Our study reveals that early stages of adipose tissue expansion are characterized by M2-polarized ATMs and that progressive lipid accumulation within ATMs heralds the M1 polarization, a macrophage phenotype associated with severe obesity and insulin resistance. Furthermore, rosiglitazone treatment, which promotes redistribution of lipids toward adipocytes and extends the M2 ATM polarization state, prevents the lipid alterations associated with M1 ATM polarization. CONCLUSIONS Our data indicate that the M1 ATM polarization in obesity might be a macrophage-specific manifestation of a more general lipotoxic pathogenic mechanism. This indicates that strategies to optimize fat deposition and repartitioning toward adipocytes might improve insulin sensitivity by preventing ATM lipotoxicity and M1 polarization.


Diabetes | 2007

Adipose tissue inflammation and increased ceramide content characterize subjects with high liver fat content independent of obesity.

Maria Kolak; Jukka Westerbacka; Vidya Velagapudi; Dick Wågsäter; Laxman Yetukuri; Janne Makkonen; Aila Rissanen; Anna-Maija Häkkinen; Monica Lindell; Robert Bergholm; Anders Hamsten; Per Eriksson; Rachel M. Fisher; Matej Orešič; Hannele Yki-Järvinen

OBJECTIVE— We sought to determine whether adipose tissue is inflamed in individuals with increased liver fat (LFAT) independently of obesity. RESEARCH DESIGN AND METHODS— A total of 20 nondiabetic, healthy, obese women were divided into normal and high LFAT groups based on their median LFAT level (2.3 ± 0.3 vs. 14.4 ± 2.9%). Surgical subcutaneous adipose tissue biopsies were studied using quantitative PCR, immunohistochemistry, and a lipidomics approach to search for putative mediators of insulin resistance and inflammation. The groups were matched for age and BMI. The high LFAT group had increased insulin (P = 0.0025) and lower HDL cholesterol (P = 0.02) concentrations. RESULTS— Expression levels of the macrophage marker CD68, the chemokines monocyte chemoattractant protein-1 and macrophage inflammatory protein-1α, and plasminogen activator inhibitor-1 were significantly increased, and those of peroxisome proliferator–activated receptor-γ and adiponectin decreased in the high LFAT group. CD68 expression correlated with the number of macrophages and crown-like structures (multiple macrophages fused around dead adipocytes). Concentrations of 154 lipid species in adipose tissue revealed several differences between the groups, with the most striking being increased concentrations of triacylglycerols, particularly long chain, and ceramides, specifically Cer(d18:1/24:1) (P = 0.01), in the high LFAT group. Expression of sphingomyelinases SMPD1 and SMPD3 were also significantly increased in the high compared with normal LFAT group. CONCLUSIONS— Adipose tissue is infiltrated with macrophages, and its content of long-chain triacylglycerols and ceramides is increased in subjects with increased LFAT compared with equally obese subjects with normal LFAT content. Ceramides or their metabolites could contribute to adverse effects of long-chain fatty acids on insulin resistance and inflammation.


Diabetes | 2011

Farnesoid X Receptor Deficiency Improves Glucose Homeostasis in Mouse Models of Obesity

Janne Prawitt; Mouaadh Abdelkarim; Johanna H.M. Stroeve; Iuliana Popescu; Hélène Duez; Vidya Velagapudi; Julie Dumont; Emmanuel Bouchaert; Theo H. van Dijk; F Anthony San Lucas; Emilie Dorchies; Mehdi Daoudi; Sophie Lestavel; Frank J. Gonzalez; Matej Orešič; Bertrand Cariou; Folkert Kuipers; Sandrine Caron; Bart Staels

OBJECTIVE Bile acids (BA) participate in the maintenance of metabolic homeostasis acting through different signaling pathways. The nuclear BA receptor farnesoid X receptor (FXR) regulates pathways in BA, lipid, glucose, and energy metabolism, which become dysregulated in obesity. However, the role of FXR in obesity and associated complications, such as dyslipidemia and insulin resistance, has not been directly assessed. RESEARCH DESIGN AND METHODS Here, we evaluate the consequences of FXR deficiency on body weight development, lipid metabolism, and insulin resistance in murine models of genetic and diet-induced obesity. RESULTS FXR deficiency attenuated body weight gain and reduced adipose tissue mass in both models. Surprisingly, glucose homeostasis improved as a result of an enhanced glucose clearance and adipose tissue insulin sensitivity. In contrast, hepatic insulin sensitivity did not change, and liver steatosis aggravated as a result of the repression of β-oxidation genes. In agreement, liver-specific FXR deficiency did not protect from diet-induced obesity and insulin resistance, indicating a role for nonhepatic FXR in the control of glucose homeostasis in obesity. Decreasing elevated plasma BA concentrations in obese FXR-deficient mice by administration of the BA sequestrant colesevelam improved glucose homeostasis in a FXR-dependent manner, indicating that the observed improvements by FXR deficiency are not a result of indirect effects of altered BA metabolism. CONCLUSIONS Overall, FXR deficiency in obesity beneficially affects body weight development and glucose homeostasis.


Embo Molecular Medicine | 2014

Effective treatment of mitochondrial myopathy by nicotinamide riboside, a vitamin B3

Nahid A. Khan; Mari Auranen; Ilse Paetau; Eija Pirinen; Liliya Euro; Saara Forsström; Lotta Pasila; Vidya Velagapudi; Christopher J. Carroll; Johan Auwerx; Anu Suomalainen

Nutrient availability is the major regulator of life and reproduction, and a complex cellular signaling network has evolved to adapt organisms to fasting. These sensor pathways monitor cellular energy metabolism, especially mitochondrial ATP production and NAD+/NADH ratio, as major signals for nutritional state. We hypothesized that these signals would be modified by mitochondrial respiratory chain disease, because of inefficient NADH utilization and ATP production. Oral administration of nicotinamide riboside (NR), a vitamin B3 and NAD+ precursor, was previously shown to boost NAD+ levels in mice and to induce mitochondrial biogenesis. Here, we treated mitochondrial myopathy mice with NR. This vitamin effectively delayed early‐ and late‐stage disease progression, by robustly inducing mitochondrial biogenesis in skeletal muscle and brown adipose tissue, preventing mitochondrial ultrastructure abnormalities and mtDNA deletion formation. NR further stimulated mitochondrial unfolded protein response, suggesting its protective role in mitochondrial disease. These results indicate that NR and strategies boosting NAD+ levels are a promising treatment strategy for mitochondrial myopathy.


Diabetologia | 2009

Serum saturated fatty acids containing triacylglycerols are better markers of insulin resistance than total serum triacylglycerol concentrations

Anna Kotronen; Vidya Velagapudi; Laxman Yetukuri; J. Westerbacka; Robert Bergholm; K. Ekroos; Janne Makkonen; Marja-Riitta Taskinen; Matej Orešič; Hannele Yki-Järvinen

Aims/hypothesisThe weak relationship between insulin resistance and total serum triacylglycerols (TGs) could be in part due to heterogeneity of TG molecules and their distribution within different lipoproteins. We determined concentrations of individual TGs and the fatty acid composition of serum and major lipoprotein particles and analysed how changes in different TGs and fatty acid composition are related to features of insulin resistance and abdominal obesity.MethodsWe performed lipidomic analyses of all major lipoprotein fractions using two analytical platforms in 16 individuals, who exhibited a broad range of insulin sensitivity.ResultsWe identified 45 different TGs in serum. Serum TGs containing saturated and monounsaturated fatty acids were positively, while TGs containing essential linoleic acid (18:2 n−6) were negatively correlated with HOMA-IR. Specific serum TGs that correlated positively with HOMA-IR were also significantly positively related to HOMA-IR when measured in very-low-density lipoproteins (VLDLs), intermediate-density lipoproteins (IDLs) and LDL, but not in HDL subfraction 2 (HDL2) or 3 (HDL3). Analyses of proportions of esterified fatty acids within lipoproteins revealed that palmitic acid (16:0) was positively related to HOMA-IR when measured in VLDL, IDL and LDL, but not in HDL2 or HDL3. Monounsaturated palmitoleic (16:1 n−7) and oleic (18:1 n−9) acids were positively related to HOMA-IR when measured in HDL2 and HDL3, but not in VLDL, IDL or LDL. Linoleic acid was negatively related to HOMA-IR in all lipoproteins.Conclusions/interpretationSerum concentrations of specific TGs, such as TG(16:0/16:0/18:1) or TG(16:0/18:1/18:0), may be more precise markers of insulin resistance than total serum TG concentrations.


Journal of Biological Chemistry | 2010

Peroxisomal and microsomal lipid pathways associated with resistance to hepatic steatosis and reduced pro-inflammatory state

Diana Hall; Carine Poussin; Vidya Velagapudi; Christophe Empsen; Magali Joffraud; Jacques S. Beckmann; Albert E. Geerts; Yann Ravussin; Mark Ibberson; Matej Orešič; Bernard Thorens

Accumulation of fat in the liver increases the risk to develop fibrosis and cirrhosis and is associated with development of the metabolic syndrome. Here, to identify genes or gene pathways that may underlie the genetic susceptibility to fat accumulation in liver, we studied A/J and C57Bl/6 mice that are resistant and sensitive to diet-induced hepatosteatosis and obesity, respectively. We performed comparative transcriptomic and lipidomic analysis of the livers of both strains of mice fed a high fat diet for 2, 10, and 30 days. We found that resistance to steatosis in A/J mice was associated with the following: (i) a coordinated up-regulation of 10 genes controlling peroxisome biogenesis and β-oxidation; (ii) an increased expression of the elongase Elovl5 and desaturases Fads1 and Fads2. In agreement with these observations, peroxisomal β-oxidation was increased in livers of A/J mice, and lipidomic analysis showed increased concentrations of long chain fatty acid-containing triglycerides, arachidonic acid-containing lysophosphatidylcholine, and 2-arachidonylglycerol, a cannabinoid receptor agonist. We found that the anti-inflammatory CB2 receptor was the main hepatic cannabinoid receptor, which was highly expressed in Kupffer cells. We further found that A/J mice had a lower pro-inflammatory state as determined by lower plasma levels and IL-1β and granulocyte-CSF and reduced hepatic expression of their mRNAs, which were found only in Kupffer cells. This suggests that increased 2-arachidonylglycerol production may limit Kupffer cell activity. Collectively, our data suggest that genetic variations in the expression of peroxisomal β-oxidation genes and of genes controlling the production of an anti-inflammatory lipid may underlie the differential susceptibility to diet-induced hepatic steatosis and pro-inflammatory state.


Cell Metabolism | 2016

The Pentose Phosphate Pathway Regulates the Circadian Clock

Guillaume Rey; Utham K. Valekunja; Kevin A. Feeney; Lisa Wulund; Nikolay B. Milev; Alessandra Stangherlin; Laura Ansel-Bollepalli; Vidya Velagapudi; John S. O’Neill; Akhilesh B. Reddy

Summary The circadian clock is a ubiquitous timekeeping system that organizes the behavior and physiology of organisms over the day and night. Current models rely on transcriptional networks that coordinate circadian gene expression of thousands of transcripts. However, recent studies have uncovered phylogenetically conserved redox rhythms that can occur independently of transcriptional cycles. Here we identify the pentose phosphate pathway (PPP), a critical source of the redox cofactor NADPH, as an important regulator of redox and transcriptional oscillations. Our results show that genetic and pharmacological inhibition of the PPP prolongs the period of circadian rhythms in human cells, mouse tissues, and fruit flies. These metabolic manipulations also cause a remodeling of circadian gene expression programs that involves the circadian transcription factors BMAL1 and CLOCK, and the redox-sensitive transcription factor NRF2. Thus, the PPP regulates circadian rhythms via NADPH metabolism, suggesting a pivotal role for NADPH availability in circadian timekeeping.


Molecular and Cellular Biology | 2012

Peroxisome Proliferator-Activated Receptor γ-Dependent Regulation of Lipolytic Nodes and Metabolic Flexibility

Sergio Rodriguez-Cuenca; Stefania Carobbio; Vidya Velagapudi; Nuria Barbarroja; José María Moreno-Navarrete; Francisco J. Tinahones; José Manuel Fernández-Real; Matej Orešič; Antonio Vidal-Puig

ABSTRACT Optimal lipid storage and mobilization are essential for efficient adipose tissue. Nuclear receptor peroxisome proliferator-activated receptor γ (PPARγ) regulates adipocyte differentiation and lipid deposition, but its role in lipolysis and dysregulation in obesity is not well defined. This investigation aimed to understand the molecular impact of dysfunctional PPARγ on the lipolytic axis and to explore whether these defects are also confirmed in common forms of human obesity. For this purpose, we used the P465L PPARγ mouse as a model of dysfunctional PPARγ that recapitulates the human pparγ mutation (P467L). We demonstrated that defective PPARγ impairs catecholamine-induced lipolysis. This abnormal lipolytic response is exacerbated by a state of positive energy balance in leptin-deficient ob/ob mice. We identified the protein kinase A (PKA) network as a PPARγ-dependent regulatory node of the lipolytic response. Specifically, defective PPARγ is associated with decreased basal expression of prkaca (PKAcatα) and d-akap1, the lipase genes Pnplaz (ATGL) and Lipe (HSL), and lipid droplet protein genes fsp27 and adrp in vivo and in vitro. Our data indicate that PPARγ is required for activation of the lipolytic regulatory network, dysregulation of which is an important feature of obesity-induced insulin resistance in humans.

Collaboration


Dive into the Vidya Velagapudi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Laxman Yetukuri

VTT Technical Research Centre of Finland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gema Medina-Gomez

King Juan Carlos University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Soili M. Lehto

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge