Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Viet Hoang Man is active.

Publication


Featured researches published by Viet Hoang Man.


Journal of Physical Chemistry B | 2017

High-Resolution Structures of the Amyloid-β 1–42 Dimers from the Comparison of Four Atomistic Force Fields

Viet Hoang Man; Phuong H. Nguyen; Philippe Derreumaux

The dimer of the amyloid-β peptide Aβ of 42 residues is the smallest toxic species in Alzheimers disease, but its equilibrium structures are unknown. Here we determined the equilibrium ensembles generated by the four atomistic OPLS-AA, CHARMM22*, AMBER99sb-ildn, and AMBERsb14 force fields with the TIP3P water model. On the basis of 144 μs replica exchange molecular dynamics simulations (with 750 ns per replica), we find that the four force fields lead to random coil ensembles with calculated cross-collision sections, hydrodynamics properties, and small-angle X-ray scattering profiles independent of the force field. There are, however, marked differences in secondary structure, with the AMBERsb14 and CHARMM22* ensembles overestimating the CD-derived helix content, and the OPLS-AA and AMBER99sb-ildn secondary structure contents in agreement with CD data. Also the intramolecular beta-hairpin content spanning residues 17-21 and 30-36 varies between 1.5% and 13%. Overall, there are significant differences in tertiary and quaternary conformations among all force fields, and the key finding, irrespective of the force field, is that the dimer is stabilized by nonspecific interactions, explaining therefore its possible transient binding to multiple cellular partners and, in part, its toxicity.


ACS Chemical Neuroscience | 2016

Amyloid Properties of Asparagine and Glutamine in Prion-like Proteins

Yuan Zhang; Viet Hoang Man; Christopher Roland; Celeste Sagui

Sequences rich in glutamine (Q) and asparagine (N) are intrinsically disordered in monomeric form, but can aggregate into highly ordered amyloids, as seen in Q/N-rich prion domains (PrDs). Amyloids are fibrillar protein aggregates rich in β-sheet structures that can self-propagate through protein-conformational chain reactions. Here, we present a comprehensive theoretical study of N/Q-rich peptides, including sequences found in the yeast Sup35 PrD, in parallel and antiparallel β-sheet aggregates, and probe via fully atomistic molecular dynamics simulations all their possible steric-zipper interfaces in order to determine their protofibril structure and their relative stability. Our results show that polyglutamine aggregates are more stable than polyasparagine aggregates. Enthalpic contributions to the free energy favor the formation of polyQ protofibrils, while entropic contributions favor the formation of polyN protofibrils. The considerably larger phase space that disordered polyQ must sample on its way to aggregation probably is at the root of the associated slower kinetics observed experimentally. When other amino acids are present, such as in the Sup35 PrD, their shorter side chains favor steric-zipper formation for N but not Q, as they preclude the in-register association of the long Q side chains.


Journal of Physical Chemistry B | 2017

Conformational Ensembles of the Wild-Type and S8C Aβ1–42 Dimers

Viet Hoang Man; Phuong H. Nguyen; Philippe Derreumaux

We characterized the dimer of the amyloid-β wild-type (WT) peptide, Aβ, of 42 residues and its disulfide-bond-locked double mutant (S8C) by replica exchange molecular dynamics simulations. Aβ dimers are known to be the smallest toxic species in Alzheimers disease, and the S8C mutant has been shown experimentally to form an exclusive homogeneous and neurotoxic dimer. Our 50 μs all-atom simulations reveal similar secondary structures and collision cross-sections but very different intramolecular and intermolecular conformations upon double S8C mutation. Both dimers are very dynamic with hundreds of free-energy minima that differ from the U-shape and S-shape conformations of the peptides in the fibrils. The only common structural feature, shared by both species with a probability of 4% in WT and 12% in S8C-S8C, is a three-stranded β-sheet spanning the 17-23, 29-36, and 39-41 residues, which does not exist in the Aβ40 WT dimers.


Journal of Physical Chemistry B | 2016

Aβ41 Aggregates More Like Aβ40 than Like Aβ42: In Silico and in Vitro Study

Hoang Linh Nguyen; Tran Thi Minh Thu; Phan Minh Truong; Pham Dang Lan; Viet Hoang Man; Phuong H. Nguyen; Ly Anh Tu; Yi-Cheng Chen; Mai Suan Li

Formation of intracellular plaques and small oligomeric species of amyloid β (Aβ) peptides inside neurons is a hallmark of Alzheimers disease. The most abundant Aβ species in the brain are Aβ1-40 and Aβ1-42, which are composed, respectively, of 40 and 42 residues. Aβ1-42 differs from Aβ1-40 only in two residues, Ile41 and Ala42, yet it shows remarkably faster aggregation and greater neurotoxicity than Aβ1-40. Thus, it is crucial to understand the relative contributions of Ile41 and Ala42 to these distinct behaviors. To achieve this, secondary structures of the Aβ1-41 monomer, which contribute to aggregation propensity, were studied by all-atom molecular dynamics simulation in an implicit solvent and compared to those of Aβ1-40 and Aβ1-42. We find that the secondary structure populations of Aβ1-41 are much closer to those of Aβ1-40 than to those of Aβ1-42, suggesting that Aβ1-41 and Aβ1-40 are likely to have similar aggregation properties. This prediction was confirmed through a thioflavin-T aggregation assay. Thus, our finding indicates that the hydrophobic residue at position 42 is the major contributor to the increased fibril formation rates and consequently neurotoxicity of Aβ peptides.


ACS Chemical Neuroscience | 2015

Structural determinants of polyglutamine protofibrils and crystallites.

Viet Hoang Man; Christopher Roland; Celeste Sagui

Nine inherited neurodegenerative diseases are associated with the expansion of the CAG codon. Once the translated polyglutamine expansion becomes longer than ~36 residues, it triggers the formation of intraneural protein aggregates that often display the signature of cross-β amyloid fibrils. Here, we use fully atomistic molecular dynamics simulations to probe the structural stability and conformational dynamics of both previously proposed and new polyglutamine aggregate models. We test the relative stability of parallel and antiparallel β sheets, and characterize possible steric interfaces between neighboring sheets and the effects of different alignments of the side-chain carboxamide dipoles. Results indicate that (i) different initial oligomer structures converge to crystals consistent with available diffraction data, after undergoing cooperative side-chain rotational transitions and quarter-stagger displacements on a microsecond time scale, (ii) structures previously deemed stable on a hundred nanosecond time scale are unstable over the microsecond time scale, and (iii) conversely, structures previously deemed unstable did not account for the correct side-chain packing and once the correct symmetry is considered the structures become stable for over a microsecond, due to tightly interdigitated side chains, which lock into highly regular polar zippers with inter-side-chain and backbone-side-chain hydrogen bonds. With these insights, we built Q40 monomeric models with different combinations of arc and hairpin turns and tested them for stability. The stable monomers were further probed as a function of repeat length. Our results are consistent with the aggregation threshold. These results explain and reconcile previously reported experimental and model discrepancies about polyglutamine aggregate structures.


Nucleic Acids Research | 2018

E-motif formed by extrahelical cytosine bases in DNA homoduplexes of trinucleotide and hexanucleotide repeats

Feng Pan; Yuan Zhang; Viet Hoang Man; Christopher Roland; Celeste Sagui

Abstract Atypical DNA secondary structures play an important role in expandable trinucleotide repeat (TR) and hexanucleotide repeat (HR) diseases. The cytosine mismatches in C-rich homoduplexes and hairpin stems are weakly bonded; experiments show that for certain sequences these may flip out of the helix core, forming an unusual structure termed an ‘e-motif’. We have performed molecular dynamics simulations of C-rich TR and HR DNA homoduplexes in order to characterize the conformations, stability and dynamics of formation of the e-motif, where the mismatched cytosines symmetrically flip out in the minor groove, pointing their base moieties towards the 5′-direction in each strand. TRs have two non-equivalent reading frames, (GCC)n and (CCG)n; while HRs have three: (CCCGGC)n, (CGGCCC)n, (CCCCGG)n. We define three types of pseudo basepair steps related to the mismatches and show that the e-motif is only stable in (GCC)n and (CCCGGC)n homoduplexes due to the favorable stacking of pseudo GpC steps (whose nature depends on whether TRs or HRs are involved) and the formation of hydrogen bonds between the mismatched cytosine at position i and the cytosine (TRs) or guanine (HRs) at position i − 2 along the same strand. We also characterize the extended e-motif, where all mismatched cytosines are extruded, their extra-helical stacking additionally stabilizing the homoduplexes.


Journal of Chemical Physics | 2018

Rayleigh-Plesset equation of the bubble stable cavitation in water: A nonequilibrium all-atom molecular dynamics simulation study

Viet Hoang Man; Mai Suan Li; Philippe Derreumaux; Phuong H. Nguyen

The Rayleigh-Plesset (RP) equation was derived from the first principles to describe the bubble cavitation in liquids in terms of macroscopic hydrodynamics. A number of nonequilibrium molecular dynamics studies have been carried out to validate this equation in describing the bubble inertial cavitation, but their results are contradictory and the applicability of the RP equation still remains to be examined, especially for the stable cavitation. In this work, we carry out nonequilibrium all-atom simulation to validate the applicability of the RP equation in the description of the stable cavitation of nano-sized bubbles in water. We show that although microscopic effects are not explicitly included, this equation still describes the dynamics of subnano-bubbles quite well as long as the contributions of various terms including inertial, surface tension, and viscosity are correctly taken into account. These terms are directly and inversely proportional to the amplitude and period of the cavitation, respectiv...


Journal of Physical Chemistry B | 2018

Structure and Dynamics of DNA and RNA Double Helices Obtained from the CCG and GGC Trinucleotide Repeats

Feng Pan; Viet Hoang Man; Christopher Roland; Celeste Sagui

Expansions of both GGC and CCG sequences lead to a number of expandable, trinucleotide repeat (TR) neurodegenerative diseases. Understanding of these diseases involves, among other things, the structural characterization of the atypical DNA and RNA secondary structures. We have performed molecular dynamics simulations of (GCC) n and (GGC) n homoduplexes in order to characterize their conformations, stability, and dynamics. Each TR has two reading frames, which results in eight nonequivalent RNA/DNA homoduplexes, characterized by CpG or GpC steps between the Watson-Crick base pairs. Free energy maps for the eight homoduplexes indicate that the C-mismatches prefer anti-anti conformations, while G-mismatches prefer anti-syn conformations. Comparison between three modifications of the DNA AMBER force field shows good agreement for the mismatch free energy maps. The mismatches in DNA-GCC (but not CCG) are extrahelical, forming an extended e-motif. The mismatched duplexes exhibit characteristic sequence-dependent step twist, with strong variations in the G-rich sequences and the e-motif. The distribution of Na+ is highly localized around the mismatches, especially G-mismatches. In the e-motif, there is strong Na+ binding by two G(N7) atoms belonging to the pseudo GpC step created when cytosines are extruded and by extrahelical cytosines. Finally, we used a novel technique based on fast melting by means of an infrared laser pulse to classify the relative stability of the different DNA-CCG and -GGC homoduplexes.


Biophysical Journal | 2016

Contrasting Roles of Asparagine and Glutamine in the Aggregation of Prion-Like Proteins

Yuan Zhang; Viet Hoang Man; Christopher Roland; Celeste Sagui

Sequences rich in glutamine (Q) and asparagine (N) are intrinsically disordered in monomeric form, but can aggregate into highly ordered amyloids, as seen in Q/N-rich prion domains (PrDs). Amyloids are fibrillar protein aggregates rich in β-sheet structures that can self-propagate through protein-conformational chain reactions. It has been shown that tuning the amount of Ns and Qs in yeast PrDs results in very different effects: N-rich mutants lead to non-pathological self-seeding amyloids while Q-rich mutants lead to toxic nonamyloid structures. These structural preferences have been explained in terms of an enhanced β- hairpin turn propensity of Ns over Qs. Here, we consider a variety of N/Q-rich peptides, including sequences found in the yeast Sup35 PrD, in parallel and antiparallel β-sheet aggregates, and probe all their possible steric-zipper interfaces to determine their relative stability. Our results show that polyglutamine aggregates are more stable than polyasparagine aggregates. The observation that Q-rich PrD mutants lack amyloid structure can be attributed to three facts. First, although once formed polyglutamine aggregates are more stable, their entropic contribution to the free energy is less favorable: Q-rich sequences have a larger phase space to sample. Second, N-rich sequences favor parallel β sheets, for which the formation of hairpin turns is irrelevant: indeed polyasparagine β-hairpins are more unstable than polyglutamine hairpins. Third, when other amino acids are present, such as in the Sup35 PrD, their shorter side chains favor steric-zipper formation for N but not Q, as they preclude the in-register association of the long Q side chains.


Biophysical Journal | 2017

Structure and Dynamics of DNA and RNA Double Helices of CAG and GAC Trinucleotide Repeats

Feng Pan; Viet Hoang Man; Christopher Roland; Celeste Sagui

Collaboration


Dive into the Viet Hoang Man's collaboration.

Top Co-Authors

Avatar

Celeste Sagui

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Christopher Roland

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Feng Pan

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Yuan Zhang

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Mai Suan Li

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Phuong H. Nguyen

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Phuong H. Nguyen

Goethe University Frankfurt

View shared research outputs
Researchain Logo
Decentralizing Knowledge