Vigdis Tverberg
Norwegian Polar Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Vigdis Tverberg.
Polar Research | 2002
Harald Svendsen; Agnieszka Beszczynska-Möller; Jon Ove Hagen; Bernard Lefauconnier; Vigdis Tverberg; Sebastian Gerland; Jon Børre Ørbæk; Kai Bischof; Carlo Papucci; Marek Zajaczkowski; Roberto Azzolini; Oddbjørn Bruland; Christian Wiencke
Kongsfjorden-Krossfjorden and the adjacent West Spitsbergen Shelf meet at the common mouth of the two fjord arms. This paper presents our most up-to-date information about the physical environment of this fjord system and identifies important gaps in knowledge. Particular attention is given to the steep physical gradients along the main fjord axis, as well as to seasonal environmental changes. Physical processes on different scales control the large-scale circulation and small-scale (irreversible) mixing of water and its constituents. It is shown that, in addition to the tide, run-off (glacier ablation, snowmelt, summer rainfall and ice calving) and local winds are the main driving forces acting on the upper water masses in the fjord system. The tide is dominated by the semi-diurnal component and the freshwater supply shows a marked seasonal variation pattern and also varies interannually. The wind conditions are characterized by prevailing katabatic winds, which at times are strengthened by the geostrophic wind field over Svalbard. Rotational dynamics have a considerable influence on the circulation patterns within the fjord system and give rise to a strong interaction between the fjord arms. Such dynamics are also the main reason why variations in the shelf water density field, caused by remote forces (tide and coastal winds), propagate as a Kelvin wave into the fjord system. This exchange affects mainly the intermediate and deep water, which is also affected by vertical convection processes driven by cooling of the surface and brine release during ice formation in the inner reaches of the fjord arms. Further aspects covered by this paper include the geological and geomorphological characteristics of the Kongsfjorden area, climate and meteorology, the influence of glaciers, freshwater supply, sea ice conditions, sedimentation processes as well as underwater radiation conditions. The fjord system is assumed to be vulnerable to possible climate changes, and thus is very suitable as a site for the demonstration and investigation of phenomena related to climate change.
Journal of Geophysical Research | 2005
Finlo Cottier; Vigdis Tverberg; Mark Inall; Harald Svendsen; Frank Nilsen; Colin Griffiths
[1] Kongsfjorden and the West Spitsbergen Shelf is a region whose seasonal hydrography is dominated by the balance of Atlantic Water, Arctic waters, and glacial melt. Regional seasonality and the cross-shelf exchange processes have been investigated using conductivity-temperature-depth (CTD) observations from 2000–2003 and a 5-month mooring deployment through the spring and summer of 2002. Modeling of shelf-fjord dynamics was performed with the Bergen Ocean Model. Observations show a rapid and overwhelming intrusion of Atlantic Water across the shelf and into the fjord during midsummer giving rise to intense seasonality. Pockets of Atlantic Water, from the West Spitsbergen Current, form through barotropic instabilities at the shelf front. These leak onto the shelf and propagate as topographically steered features toward the fjord. Model results indicate that such cross-front exchange is enhanced by north winds. Normally, Atlantic Water penetration into the fjord is inhibited by a density front at the fjord mouth. This geostrophic control mechanism is found to be more important than the hydraulic control common to many fjords. Slow modification of the fjord water during spring reduces the effectiveness of geostrophic control, and by midsummer, Atlantic Water intrudes into the fjord, switching from being Arctic dominant to Atlantic dominant. Atlantic Water continues to intrude throughout the summer and by September reaches some quasi steady state condition. The fjord adopts a ‘‘cold’’ or ‘‘warm’’ mode according to the degree of Atlantic Water occupation. Horizontal exchange across the shelf may be an important process causing seasonal variability in the northward heat transport to the Arctic.
Polar Research | 2001
Eberhard Fahrbach; Jens Meincke; Svein Østerhus; Gerd Rohardt; Ursula Schauer; Vigdis Tverberg; J. Verduin
Heat and freshwater transports through Fram Strait are understood to have a significant influence on the hydrographic conditions in the Arctic Ocean and on water mass modifications in the Nordic seas. To determine these transports and their variability reliable estimates of the volume transport through the strait are required. Current meter moorings were deployed in Fram Strait from September 1997 to September 1999 in the framework of the EU MAST III Variability of Exchanges in the Northern Seas programme. The monthly mean velocity fields reveal marked velocity variations over seasonal and annual time scales, and the spatial structure of the northward flowing West Spitsbergen Current and the southward East Greenland Current with a maximum in spring and a minimum in summer. The volume transport obtained by averaging the monthly means over two years amounts to 9.5 ± 1.4 Sv to the north and 11.1 ± 1.7 Sv to the south (1 Sv = 106 m3s-1). The West Spitsbergen Current has a strong barotropic and a weaker baroclinic component; in the East Greenland Current barotropic and baroclinic components are of similar magnitude. The net transport through the strait is 4.2 ± 2.3 Sv to the south. The obtained northward and southward transports are significantly larger than earlier estimates in the literature; however, within its range of uncertainty the balance obtained from a two year average is consistent with earlier estimates.
Polar Research | 2009
Wojciech Walkusz; Slawek Kwasniewski; Stig Falk-Petersen; Haakon Hop; Vigdis Tverberg; Piotr Wieczorek; Jan Marcin Węsławski
Seasonal changes in the zooplankton composition of the glacially influenced Kongsfjorden, Svalbard (79°N, 12°E), and its adjacent shelf were studied in 2002. Samples were collected in the spring, summer and autumn in stratified hauls (according to hydrographic characteristics), by means of a 0.180-mm Multi Plankton Sampler. A strong front between the open sea and the fjord waters was observed during the spring, preventing water mass exchange, but was not observed later in the season. The considerable seasonal changes in zooplankton abundance were related to the seasonal variation in hydrographical regime. The total zooplankton abundance during the spring (40–2010 individuals m-3) was much lower than in the summer and autumn (410– 10 560 individuals m-3). The main factors shaping the zooplankton community in the fjord include: the presence of a local front, advection, the flow pattern and the decreasing depth of the basin in the inner fjord. Presumably these factors regulate the gross pattern of zooplankton density and distribution, and override the importance of biological processes. This study increased our understanding of seasonal processes in fjords, particularly with regard to the strong seasonal variability in the Arctic.
Journal of Geophysical Research | 2011
Ole Anders Nøst; Martin Biuw; Vigdis Tverberg; Christian Lydersen; Tore Hattermann; Qin Zhou; Lars Henrik Smedsrud; Kit M. Kovacs
[1] The Eastern Weddell Sea is characterized by narrow continental shelves and Warm Deep Water (WDW) is located in close proximity to the ice shelves in this region. The exchange of WDW across the Antarctic Slope Front (ASF) determines the rate of basal ice shelf melting. Here, we present a unique data set consisting of 2351 vertical profiles of temperature and salinity collected by southern elephant seals (Mirounga leonina) and a profile beneath the Fimbul Ice Shelf (FIS), obtained via drilling through 395 m of ice. This data set reveals variations in salinity and temperature through winter, and using a conceptual model of the coastal salt budget we quantify the main exchange processes. Our data show that modified WDW, with temperatures below −1.5°C, is advected onto the shelf and into the ice shelf cavities by an eddy overturning of the ASF. The onshore Ekman flux of surface waters during summer is the main source of freshwater that leads to the formation of low salinity shelf waters in the region. The modified WDW that reaches beneath the ice shelves is too cold for basal ice shelf melting to create such low salinity water. A high‐resolution model of an idealized ASF–continental shelf–ice shelf system supports the conclusions from the data analysis. The inflow of WDW onto the continental shelf and into the ice shelf cavity occurs within a bottom boundary layer where the eddy advection in the model is particularly strong, in close agreement with the observed vertical profile of temperature beneath the FIS. Citation: Nost, O. A., M. Biuw, V. Tverberg, C. Lydersen, T. Hattermann, Q. Zhou, L. H. Smedsrud, and K. M. Kovacs (2011), Eddy overturning of the Antarctic Slope Front controls glacial melting in the Eastern Weddell Sea, J. Geophys. Res., 116, C11014, doi:10.1029/2011JC006965.
Polar Research | 2013
Alexey K. Pavlov; Vigdis Tverberg; Boris V. Ivanov; Frank Nilsen; Stig Falk-Petersen; Mats A. Granskog
The recently observed warming of west Spitsbergen fjords has led to anomalous sea-ice conditions and has implications for the marine ecosystem. We investigated long-term trends of maximum temperature of Atlantic Water (AW) in two west Spitsbergen fjords. The data set is composed of more than 400 oceanographic stations for Isfjorden and Grønfjorden (78.1°N), spanning from 1876 to 2009. Trends throughout the last century (1912–2009) indicate an increase of 1.9°C and 2.1°C in the maximum temperature during autumn for Isfjorden and Grønfjorden, respectively. A recent warming event in the beginning of the 21st century is found to be more than 1°C higher than the second warmest period in the time series. Mean sea-level pressure (MSLP) data from ERA-40 and ERA-Interim data sets produced by the European Centre for Medium-Range Weather Forecasts and mean temperature in the core of the West Spitsbergen Current (WSC) at the Sørkapp Section along 76.3°N were used to explain the variability of the maximum temperature. A correlation analysis confirmed previous findings, showing that variability in the oceanography of the fjords can be explained mainly by two external factors: AW temperature variability in the WSC and regional patterns of the wind stress field. To take both processes into consideration, a multiple regression model accounting for temperature in the WSC core and MSLP over the area was developed. The predicted time series shows a reasonable agreement with observed maxima temperature in Isfjorden for the period 1977–2009 (N=24), with a statistically significant multiple correlation coefficient of 0.60 (R 2=0.36) at P<0.05.
Journal of Geophysical Research | 2014
Vigdis Tverberg; Ole Anders Nøst; Christian Lydersen; Kit M. Kovacs
Herein, we study a small area along the shelf west of Spitsbergen, near Prins Karls Forland, where warm, saline Atlantic Water of the West Spitsbergen Current currently first encounters sea ice. This sea ice is drifting in a coastal current that carries Arctic Water originating from the Barents Sea northward over the shelf. Our aim was to investigate whether melting of sea ice by Atlantic Water in this area might be a significant factor that could contribute to the formation of a cold halocline layer that isolates the sea ice from further melting from below. Observations of temperature and salinity profiles were collected during two winters, via CTD-SRDL instruments deployed on harbor seals (Phoca vitulina), and fed into a heat and freshwater budget box model in order to quantify the importance of melting relative to other processes that could transform the shelf water mass during winter. Cross-frontal exchange of Atlantic Water from the West Spitsbergen Current, driven by buoyancy forcing rather than Ekman upwelling, was determined to be the source of the heat that melted drift ice on the shelf. Some local sea ice formation did take place, but its importance in the total heat and freshwater budgets appeared to be minor. The data suggest that the production of a cold halocline layer was preceded by southerly winds and rapid drift ice melting.
Journal of Plankton Research | 2016
Boris Espinasse; Sünnje Linnéa Basedow; Vigdis Tverberg; Tore Hattermann; Ketil Eiane
High Calanus finmarchicus abundances were recorded in wintertime in Vestfjorden, close to the main cod breeding grounds off Lofoten and Vesterålen, northern Norway. The mean abundance for locations with water depth >500 m was ∼37000 ind. m−2 (range: 26700–49000 ind. m−2). To our knowledge, this is the first report of massive overwintering of C. finmarchicus on the Norwegian shelf. Because of the observed size and location of this population, we argue that local overwintering on the northern Norwegian shelf can contribute significantly to sustain a C. finmarchicus population on the shelf during the period of first feeding for cod larvae. This is supported by a particle tracking model.
Biology Letters | 2017
Marvin Raoul Charles Roger Ren Choquet; Maja Haltebakk; Anusha K. S. Dhanasiri; Ksenia Kosobokova; Irina Smolina; Janne E. Søreide; Camilla Svensen; Webjørn Raunsgård Melle; Slawomir Kwasniewski; Ketil Eiane; Malin Daase; Vigdis Tverberg; Stig Skreslet; Ann Bucklin; Galice Hoarau
Planktonic copepods of the genus Calanus play a central role in North Atlantic/Arctic marine food webs. Here, using molecular markers, we redrew the distributional ranges of Calanus species inhabiting the North Atlantic and Arctic Oceans and revealed much wider and more broadly overlapping distributions than previously described. The Arctic shelf species, C. glacialis, dominated the zooplankton assemblage of many Norwegian fjords, where only C. finmarchicus has been reported previously. In these fjords, high occurrences of the Arctic species C. hyperboreus were also found. Molecular markers revealed that the most common method of species identification, prosome length, cannot reliably discriminate the species in Norwegian fjords. Differences in degree of genetic differentiation among fjord populations of the two species suggested that C. glacialis is a more permanent resident of the fjords than C. finmarchicus. We found no evidence of hybridization between the species. Our results indicate a critical need for the wider use of molecular markers to reliably identify and discriminate these morphologically similar copepod species, which serve as important indicators of climate responses.
Geophysical Research Letters | 2007
Finlo Cottier; Frank Nilsen; Mark Inall; Sebastian Gerland; Vigdis Tverberg; Harald Svendsen