Vigneshwaran Pitchaimani
Niigata University of Pharmacy and Applied Life Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Vigneshwaran Pitchaimani.
Experimental Dermatology | 2015
Vengadeshprabhu Karuppagounder; Somasundaram Arumugam; Rajarajan A. Thandavarayan; Vigneshwaran Pitchaimani; Remya Sreedhar; Rejina Afrin; Meilei Harima; Hiroshi Suzuki; Mayumi Nomoto; Shizuka Miyashita; Kenji Suzuki; Masahiko Nakamura; Kenichi Watanabe
Quercetin, glycosylated form of flavonoid compound, has potent antioxidant and anti‐inflammatory properties. In this study, we have investigated the effects of quercetin on skin lesion, high‐mobility group box (HMGB)1 cascade signalling and inflammation in atopic dermatitis (AD) mouse model. AD‐like lesion was induced by the application of house dust mite extract to the dorsal skin of NC/Nga transgenic mouse. After AD induction, quercetin (50 mg/kg, p.o) was administered daily for 2 weeks. We evaluated dermatitis severity, histopathological changes and changes in protein expression by Western blotting for HMGB1, receptor for advanced glycation end products (RAGE), toll‐like receptor (TLR)4, nuclear factor (NF)κB, nuclear factor erythroid‐2‐related factor (Nrf)2, kelch‐like ECH‐associated protein (Keap)1, extracellular signal‐regulated kinase (ERK)1/2, cyclooxygenase (COX)2, tumor necrosis factor (TNF)α, interleukin (IL)‐1β, IL‐2Rα and other inflammatory markers in the skin of AD mice. In addition, serum levels of T helper (Th) cytokines (interferon (IFN)γ, IL‐4) were measured by enzyme‐linked immunosorbent assay. Quercetin treatment attenuated the development of AD‐like skin lesions. Histological analysis showed that quercetin inhibited hyperkeratosis, parakeratosis, acanthosis, mast cells and infiltration of inflammatory cells. Furthermore, quercetin treatment downregulated cytoplasmic HMGB1, RAGE, nuclear p‐NFκB, p‐ERK1/2, COX2, TNFα, IL‐1β, IL‐2Rα, IFNγ and IL‐4 and upregulated nuclear Nrf2. Our data demonstrated that the HMGB1/RAGE/NFκB signalling might play an important role in skin inflammation, and quercetin treatment could be a promising agent for AD by modulating the HMGB1/RAGE/NFκB signalling and induction of Nrf2 protein.
Free Radical Research | 2015
Rejina Afrin; Somasundaram Arumugam; Vivian Soetikno; Rajarajan A. Thandavarayan; Vigneshwaran Pitchaimani; Vengadeshprabhu Karuppagounder; Remya Sreedhar; Meilei Harima; Hiroshi Suzuki; Shizuka Miyashita; Mayumi Nomoto; Kazuo Suzuki; Kenichi Watanabe
Abstract We investigated the effect of curcumin on liver injury in diabetic rats induced by streptozotocin (STZ) through modulation of endoplasmic reticulum stress (ERS) and unfolded protein response (UPR). Experimental diabetes was induced by a single intraperitoneal injection of STZ (55 mg/kg), and curcumin was given at 100 mg/kg by gavage for 56 days. We observed that curcumin improved the morphological and histopathological changes, significantly decreased hepatic ERS marker protein: glucose-regulated protein 78, and improved liver function in diabetic rats. Moreover, treatment with curcumin markedly decreased the sub-arm of the UPR signaling protein such as phospho–double-stranded RNA-dependent protein kinase-like ER kinase, CCAAT/enhancer-binding protein homologous protein, tumor necrosis factor receptor-associated factor 2, and inositol-requiring enzyme1α; and inhibited tumor necrosis factor α, interleukin 1β, phospho-p38 mitogen-activated protein kinase, and apoptosis signal-regulating kinase 1 in liver tissues of diabetic rats. Apoptotic and anti-apoptotic signaling proteins, such as cleaved caspase-3 and B-cell lymphoma 2, were significantly increased and decreased, respectively in diabetic rats; curcumin treatment prevented all of these alterations. In summary, our results indicate that curcumin has the potential to protect the diabetic liver by modulating hepatic ERS-mediated apoptosis, and provides a novel therapeutic strategy for the diabetic liver damage.
International Immunopharmacology | 2015
Vengadeshprabhu Karuppagounder; Somasundaram Arumugam; Rajarajan A. Thandavarayan; Vigneshwaran Pitchaimani; Remya Sreedhar; Rejina Afrin; Meilei Harima; Hiroshi Suzuki; Kenji Suzuki; Masahiko Nakamura; Kazuyuki Ueno; Kenichi Watanabe
Inflammation and oxidative stress play important roles in the progression of renal damage. The natural polyphenol naringenin is known to exert potent antioxidant and anti-inflammatory effects. In this study, we have investigated the effect of naringenin on kidney dysfunction, fibrosis, endoplasmic reticulum (ER) stress, angiotensin II type I receptor (AT1R) expression and inflammation in daunorubicin (DNR) induced nephrotoxicity model. Nephrotoxicity was induced in rats by intravenous injection of DNR at a cumulative dose of 9 mg/kg. After 1 week, naringenin (20mg/kg/day. p.o) was administered daily for 6 weeks. Biochemical studies were performed to evaluate renal function. Western blotting was performed to measure the protein levels of AT1R, endothelin (ET)1, ET receptor type A (ETAR), extracellular signal-regulated kinase (ERK)1/2, nuclear factor (NF)κB p65, peroxisome proliferator activated receptor (PPAR)γ, oxidative/ER stress, apoptosis, and inflammatory markers in the kidney of DNR treated rats. Histopathological analysis was done using hemotoxylin eosin and Masson trichrome stained renal sections to investigate the structural abnormalities and fibrosis. DNR treated rats suffered from nephrotoxicity as evidenced by worsened renal function, increased blood urea nitrogen, serum creatinine levels in renal tissues and histopathogical abnormalities. Treatment with naringenin mitigated these changes. Furthermore, naringenin up regulated PPARγ and down regulated AT1R, ET1, ETAR, p-ERK1/2, p-NFκB p65, ER stress, apoptosis, and inflammatory markers. Our results suggest that naringenin has an ability to improve renal function and attenuates AT1R, ERK1/2-NFκB p65 signaling pathway in DNR induced nephrotoxicity in rats.
Cytokine | 2015
Vengadeshprabhu Karuppagounder; Somasundaram Arumugam; Rajarajan A. Thandavarayan; Vigneshwaran Pitchaimani; Remya Sreedhar; Rejina Afrin; Meilei Harima; Hiroshi Suzuki; Mayumi Nomoto; Shizuka Miyashita; Kenji Suzuki; Masahiko Nakamura; Kazuyuki Ueno; Kenichi Watanabe
Polyphenolic compound tannic acid, which is mainly found in grapes and green tea, is a potent antioxidant with anticarcinogenic activities. In this present study, we hypothesized that tannic acid could inhibit nuclear factor (NF)κB signaling and inflammation in atopic dermatitis (AD) NC/Nga mice. We have analyzed the effects of tannic acid on dermatitis severity, histopathology and expression of inflammatory signaling proteins in house dust mite extract induced AD mouse skin. In addition, serum levels of T helper (Th) cytokines (interferon (IFN)γ, interleukin (IL)-4) were measured by enzyme-linked immunosorbent assay. Treatment with tannic acid ameliorated the development of AD-like clinical symptoms and effectively inhibited hyperkeratosis, parakeratosis, acanthosis, mast cells and infiltration of inflammatory cells in the AD mouse skin. Serum levels of IFNγ and IL-4 were significantly down-regulated by tannic acid. Furthermore, tannic acid treatment inhibited DfE induced tumor necrosis factor (TNF)α, high mobility group protein (HMG)B1, receptor for advanced glycation end products (RAGE), extracellular signal-regulated kinase (ERK)1/2, NFκB, cyclooxygenase (COX)2, IL-1β and increased the protein expression of peroxisome proliferator-activated receptor (PPAR)γ. Taken together, our results demonstrate that, DfE induced skin inflammation might be mediated through NFκB signaling and tannic acid may be a potential therapeutic agent for AD, which may possibly act via induction of PPARγ protein.
International Immunopharmacology | 2014
Vengadeshprabhu Karuppa Gounder; Somasundaram Arumugam; Wawaimuli Arozal; Rajarajan A. Thandavarayan; Vigneshwaran Pitchaimani; Meilei Harima; Kenji Suzuki; Mayumi Nomoto; Kenichi Watanabe
Anthracycline anticancer drug daunorubicin (DNR) can induce chronic nephrotoxicity, which is believed to be based on oxidative injury. Olmesartan has significant blood pressure lowering effect via modulating renin-angiotensin system although its mechanism of action in DNR-induced renal injury is largely unknown. Transcription factor nuclear factor-erythroid 2-related factor 2 (Nrf2) is an important regulator of cellular oxidative stress. This study examined the role of Nrf2 in olmesartan-mediated antioxidant effects in DNR induced kidney cells. In addition, key factors involved in promoting inflammation and oxidative stress were studied. Sprague-Dawley rats were treated with a cumulative dose of 9 mg/kg DNR (i.v.). Olmesartan was administered orally every day for 6 weeks. DNR treated rats showed nephrotoxicity as evidenced by worsening renal function, which was evaluated by measuring total cholesterol, triglyceride levels in kidney tissue and histopathological approaches; treatment with olmesartan reversed these changes. Furthermore, olmesartan treatment down-regulated phospho-MAPKAPK-2, caspase-12, p47(phox), p67(phox), upregulated renal expression of PPAR-γ, Bcl-xL, glutathione peroxidase and Nrf2. Furthermore, olmesartan down-regulated matrix metalloproteinase-2 and angiotensin II type I receptor expression in the kidney. In conclusion, the result demonstrated that angiotensin II and oxidative stress play a key role in DNR-induced nephrotoxicity. The present results indicated that olmesartan protects against oxidative stress, which may be possibly via the induction of Nrf2 signaling pathways.
Cellular Signalling | 2015
Remya Sreedhar; Somasundaram Arumugam; Rajarajan A. Thandavarayan; Vijayasree V. Giridharan; Vengadeshprabhu Karuppagounder; Vigneshwaran Pitchaimani; Rejina Afrin; Shizuka Miyashita; Mayumi Nomoto; Meilei Harima; Narasimman Gurusamy; Kenji Suzuki; Kenichi Watanabe
There is a definite cardioprotective role for 14-3-3η protein against pressure overload induced cardiac hypertrophy and streptozotocin induced cardiac dysfunction in type 1 diabetes mellitus (DM). But it is not conclusive whether it has any influence on mitochondrial mediated cardiomyocyte apoptosis in type 2 DM. In order to test this hypothesis, we have used C57BL6/J (WT) mice with cardiac specific dominant negative mutation of 14-3-3η protein (DN 14-3-3η). Both WT and DN 14-3-3η mice were fed with high fat diet (HFD) for 12weeks. Their body weight and blood glucose levels were measured weekly and compared with standard diet (SD) fed mice. By the end of 12weeks, echocardiography was performed. Frozen myocardial sections were prepared to stain the apoptotic cardiomyocytes using TUNEL staining. DN 14-3-3η mice fed with HFD showed cardiac dysfunction as identified by the decreased fractional shortening and ejection fraction and increased cardiomyocyte apoptosis in TUNEL staining. Western blotting analysis using mitochondrial fraction of the ventricular tissue homogenates showed a significant reduction in the level of cytochrome c suggesting its translocation into cytoplasm, which may be crucial in inducing cardiomyocyte apoptosis. In addition, DN 14-3-3η mice depicted significantly increased levels of NADPH oxidase subunits suggesting oxidative stress, a significant reduction in phospho apoptosis signal-regulating kinase-1 (p-Ask-1) and increase in Ask-1 and phospho c-Jun N-terminal kinase (p-JNK) levels suggesting activation of Ask-1/JNK signaling. These results suggest that 14-3-3η has a protective role against mitochondria mediated cardiomyocyte apoptosis with the involvement of Ask-1/JNK signaling during HFD induced type 2 DM.
Journal of Clinical Biochemistry and Nutrition | 2012
Vigneshwaran Pitchaimani; Somasundaram Arumugam; Rajarajan A. Thandavarayan; Manisenthilkumar K. Thiyagarajan; Rajasekaran Aiyalu; Remya Sreedhar; Takashi Nakamura; Kenichi Watanabe
Alzheimer’s disease is a devastating neurodegenerative disorder, the most common among the dementing illnesses. Acetaminophen has gaining importance in neurodegenerative diseases by attenuating the dopaminergic neurodegeneration in Caenorhabditis elegans model, decreasing the chemokines and the cytokines and increasing the anti apoptotic protein such as Bcl-2 in neuronal cell culture. The low concentration acetaminophen improved the facilitation to find the hidden platform in Morris Water Maze Test. Also some data suggest that acetaminophen could contribute in neurodegeneration. The present study was aimed to evaluate the effect of acetaminophen against colchicine induced cognitive impairment and oxidative stress in wistar rats. The cognitive learning and memory behaviour was assessed using step through passive avoidance paradigm and acetylcholine esterase activity. The parameters of oxidative stress were assessed by measuring the malondialdehyde, reduced glutathione and catalase levels in the whole brain homogenates. There was a significant memory improvement in the rats received acetaminophen treatment and it has also decreased the acetylcholine esterase enzyme level, confirming its nootropic activity. Acetaminophen neither increases nor decreases the reduced glutathione and catalase in the whole brain homogenates, showing that acetaminophen is devoid of any adverse effect on brain antioxidant defense system.
International Immunopharmacology | 2015
Remya Sreedhar; Somasundaram Arumugam; Vengadeshprabhu Karuppagounder; Rajarajan A. Thandavarayan; Vijayasree V. Giridharan; Vigneshwaran Pitchaimani; Mst. Rejina Afrin; Meilei Harima; Takashi Nakamura; Masahiko Nakamura; Kenji Suzuki; Kenichi Watanabe
Jumihaidokuto, a Japanese kampo medicine, is prescribed in Japan for its anti-inflammatory activity. Here we have examined its beneficial effects against acute colitis induced by dextran sulfate sodium (DSS) in mice. We have used C57BL/6 female mice, divided into two groups and received 3% DSS in drinking water during the experimental period (8days). Treatment group mice received 1g/kg/day dose of Jumihaidokuto orally whereas DSS control group received equal volume of distilled water. Normal control group mice received plain drinking water. Jumihaidokuto treatment attenuated the colitis symptoms along with suppression of various inflammatory marker proteins such as IL-1β, IL-2Rα, IL-4, CTGF and RAGE. It has also down-regulated the oxidative stress and apoptotic signaling in the colons of mice with colitis. The present study has confirmed the beneficial effects of Jumihaidokuto on DSS induced acute colitis in mice and suggests that it can be a potential agent for the treatment of colitis.
Cytokine | 2015
Somasundaram Arumugam; Remya Sreedhar; Rajarajan A. Thandavarayan; Vijayasree V. Giridharan; Vengadeshprabhu Karuppagounder; Vigneshwaran Pitchaimani; Mst. Rejina Afrin; Shizuka Miyashita; Mayumi Nomoto; Meilei Harima; Hiroshi Suzuki; Takashi Nakamura; Masahiko Nakamura; Kenji Suzuki; Kenichi Watanabe
The renin angiotensin system (RAS) is essential for the regulation of cardiovascular and renal functions to maintain the fluid and electrolyte homeostasis. Recent studies have demonstrated a locally expressed RAS in various tissues of mammals, which is having pathophysiological roles in those organ system. Interestingly, local RAS has important role during the inflammatory bowel disease pathogenesis. Further to delineate its role and also to identify the potential effects of telmisartan, an angiotensin receptor blocker, we have used a mouse model of acute colitis induced by dextran sulphate sodium. We have used 0.01 and 5mg/kg body weight doses of telmisartan and administered as enema to facilitate the on-site action and to reduce the systemic adverse effects. Telmisartan high dose treatment significantly reduced the disease activity index score when compared with the colitis control mice. In addition, oxidative stress and endoplasmic reticulum stress markers expression were also significantly reduced when compared with the colitis control mice. Subsequent experiments were carried out to investigate some of the mechanisms underlying its anti-inflammatory effects and identified that the mRNA levels of pro-inflammatory cytokines such as tumour necrosis factor α, interleukin 1β, interleukin 6 and monocyte chemoattractant protein 1 as well as cellular DNA damage were significantly suppressed when compared with the colitis control mice. Similarly the apoptosis marker proteins such as cleaved caspase 3 and 7 levels were down-regulated and anti-apoptotic protein Bcl2 level was significantly upregulated by telmisartan treatment. These results indicate that blockade of RAS by telmisartan can be an effective therapeutic option against acute colitis.
Experimental Dermatology | 2016
Vengadeshprabhu Karuppagounder; Somasundaram Arumugam; Rajarajan A. Thandavarayan; Remya Sreedhar; Vijayasree V. Giridharan; Vigneshwaran Pitchaimani; Rejina Afrin; Meilei Harima; Prasanna Krishnamurthy; Kenji Suzuki; Masahiko Nakamura; Kazuyuki Ueno; Kenichi Watanabe
mentation successfully reversed the aberrations associated with impairment of acidic homoeostasis (Fig. 2f), supporting the possible therapeutic role of ACVR1C stimulation in sensitive skin. Conclusions Taken together, our findings not only show reduced expression of ACVR1C in sensitive skin but also demonstrate that ACVR1C plays crucial roles in the pathogenesis of sensitive skin, and the activation of these signalling pathways in vitro successfully reversed pain pathways in RD cells, thereby raising the possibility of a novel therapeutic approach for sensitive skin. Further studies are warranted to find novel chemicals or natural compounds to improve sensitive skin by activating ACVR1C pathway effectively and safely. Acknowledgements This study was supported by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (grant number: HI14C1277). Author contributions EJK, YKK and YML performed the experiments. EJK, DHL, HCE and JHC designed the study, analysed the data and wrote the manuscript. Conflicts of interest The authors declare no conflicting interest. Supporting Information
Collaboration
Dive into the Vigneshwaran Pitchaimani's collaboration.
Niigata University of Pharmacy and Applied Life Sciences
View shared research outputsNiigata University of Pharmacy and Applied Life Sciences
View shared research outputsVengadeshprabhu Karuppagounder
Niigata University of Pharmacy and Applied Life Sciences
View shared research outputsNiigata University of Pharmacy and Applied Life Sciences
View shared research outputsNiigata University of Pharmacy and Applied Life Sciences
View shared research outputsNiigata University of Pharmacy and Applied Life Sciences
View shared research outputs