Vijai Joseph
Memorial Sloan Kettering Cancer Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Vijai Joseph.
JAMA Oncology | 2016
Kasmintan A. Schrader; Donavan T. Cheng; Vijai Joseph; Meera Prasad; Michael F. Walsh; Ahmet Zehir; Ai Ni; Tinu Thomas; Ryma Benayed; Asad Ashraf; Annie Lincoln; Maria E. Arcila; Zsofia K. Stadler; David B. Solit; David M. Hyman; Liying Zhang; David S. Klimstra; Marc Ladanyi; Kenneth Offit; Michael F. Berger; Mark Robson
IMPORTANCE Tumor genetic sequencing identifies potentially targetable genetic alterations with therapeutic implications. Analysis has concentrated on detecting tumor-specific variants, but recognition of germline variants may prove valuable as well. OBJECTIVE To estimate the burden of germline variants identified through routine clinical tumor sequencing. DESIGN, SETTING, AND PARTICIPANTS Patients with advanced cancer diagnoses eligible for studies of targeted agents at Memorial Sloan Kettering Cancer Center are offered tumor-normal sequencing with MSK-IMPACT, a 341-gene panel. We surveyed the germline variants seen in 187 overlapping genes with Mendelian disease associations in 1566 patients who had undergone tumor profiling between March and October 2014. MAIN OUTCOMES AND MEASURES The number of presumed pathogenic germline variants (PPGVs) and variants of uncertain significance per person in 187 genes associated with single-gene disorders and the proportions of individuals with PPGVs in clinically relevant gene subsets, in genes consistent with known tumor phenotypes, and in genes with evidence of second somatic hits in their tumors. RESULTS The mean age of the 1566 patients was 58 years, and 54% were women. Presumed pathogenic germline variants in known Mendelian disease-associated genes were identified in 246 of 1566 patients (15.7%; 95% CI, 14.0%-17.6%), including 198 individuals with mutations in genes associated with cancer susceptibility. Germline findings in cancer susceptibility genes were concordant with the individuals cancer type in only 81 of 198 cases (40.9%; 95% CI, 34.3%-47.9%). In individuals with PPGVs retained in the tumor, somatic alteration of the other allele was seen in 39 of 182 cases (21.4%; 95% CI, 16.1%-28.0%), of which 13 cases did not show a known correlation of the germline mutation and a known syndrome. Mutations in non-cancer-related Mendelian disease genes were seen in 55 of 1566 cases (3.5%; 95% CI, 27.1%-45.4%). Almost every individual had more than 1 variant of uncertain significance (1565 of 1566 patients; 99.9%; 95% CI, 99.6%-99.9%). CONCLUSIONS AND RELEVANCE Germline variants are common in individuals undergoing tumor-normal sequencing and may reveal otherwise unsuspected syndromic associations.
PLOS Genetics | 2013
Bari J. Ballew; Vijai Joseph; Saurav De; Grzegorz Sarek; Jean-Baptiste Vannier; Travis H. Stracker; Kasmintan A. Schrader; Trudy N. Small; Richard J. O'Reilly; Chris Manschreck; Megan Harlan Fleischut; Liying Zhang; John Sullivan; Kelly L. Stratton; Meredith Yeager; Kevin B. Jacobs; Neelam Giri; Blanche P. Alter; Joseph Boland; Laurie Burdett; Kenneth Offit; Simon J. Boulton; Sharon A. Savage; John H.J. Petrini
Dyskeratosis congenita (DC) is a heterogeneous inherited bone marrow failure and cancer predisposition syndrome in which germline mutations in telomere biology genes account for approximately one-half of known families. Hoyeraal Hreidarsson syndrome (HH) is a clinically severe variant of DC in which patients also have cerebellar hypoplasia and may present with severe immunodeficiency and enteropathy. We discovered a germline autosomal recessive mutation in RTEL1, a helicase with critical telomeric functions, in two unrelated families of Ashkenazi Jewish (AJ) ancestry. The affected individuals in these families are homozygous for the same mutation, R1264H, which affects three isoforms of RTEL1. Each parent was a heterozygous carrier of one mutant allele. Patient-derived cell lines revealed evidence of telomere dysfunction, including significantly decreased telomere length, telomere length heterogeneity, and the presence of extra-chromosomal circular telomeric DNA. In addition, RTEL1 mutant cells exhibited enhanced sensitivity to the interstrand cross-linking agent mitomycin C. The molecular data and the patterns of inheritance are consistent with a hypomorphic mutation in RTEL1 as the underlying basis of the clinical and cellular phenotypes. This study further implicates RTEL1 in the etiology of DC/HH and immunodeficiency, and identifies the first known homozygous autosomal recessive disease-associated mutation in RTEL1.
Journal of Clinical Oncology | 2016
Judith Balmaña; Laura DiGiovanni; Pragna Gaddam; Michael F. Walsh; Vijai Joseph; Zsofia K. Stadler; Katherine L. Nathanson; Judy Garber; Fergus J. Couch; Kenneth Offit; Mark E. Robson; Susan M. Domchek
Purpose Massively parallel sequencing allows simultaneous testing of multiple genes associated with cancer susceptibility. Guidelines are available for variant classification; however, interpretation of these guidelines by laboratories and providers may differ and lead to conflicting reporting and, potentially, to inappropriate medical management. We describe conflicting variant interpretations between Clinical Laboratory Improvement Amendments–approved commercial clinical laboratories, as reported to the Prospective Registry of Multiplex Testing (PROMPT), an online genetic registry. Methods Clinical data and genetic testing results were gathered from 1,191 individuals tested for inherited cancer susceptibility and self-enrolled in PROMPT between September 2014 and October 2015. Overall, 518 participants (603 genetic variants) had a result interpreted by more than one laboratory, including at least one submitted to ClinVar, and these were used as the final cohort for the current analysis. Results Of the 603 variants, 221 (37%) were classified as a variant of uncertain significance (VUS), 191 (32%) as pathogenic, and 34 (6%) as benign. The interpretation differed among reporting laboratories for 155 (26%). Conflicting interpretations were most frequently reported for CHEK2 and ATM, followed by RAD51C, PALB2, BARD1, NBN, and BRIP1. Among all participants, 56 of 518 (11%) had a variant with conflicting interpretations ranging from pathogenic/likely pathogenic to VUS, a discrepancy that may alter medical management. Conclusions Conflicting interpretation of genetic findings from multiplex panel testing used in clinical practice is frequent and may have implications for medical management decisions.
JAMA | 2017
Diana Mandelker; Liying Zhang; Yelena Kemel; Zsofia K. Stadler; Vijai Joseph; Ahmet Zehir; Nisha Pradhan; Angela G. Arnold; Michael F. Walsh; Yirong Li; Anoop R. Balakrishnan; Aijazuddin Syed; Meera Prasad; Khedoudja Nafa; Maria I. Carlo; Karen A. Cadoo; Meg Sheehan; Megan Harlan Fleischut; Erin E. Salo-Mullen; Magan Trottier; Steven M. Lipkin; Anne Lincoln; Semanti Mukherjee; Vignesh Ravichandran; Roy Cambria; Jesse Galle; Wassim Abida; Marcia E. Arcila; Ryma Benayed; Ronak Shah
Importance Guidelines for cancer genetic testing based on family history may miss clinically actionable genetic changes with established implications for cancer screening or prevention. Objective To determine the proportion and potential clinical implications of inherited variants detected using simultaneous sequencing of the tumor and normal tissue (“tumor-normal sequencing”) compared with genetic test results based on current guidelines. Design, Setting, and Participants From January 2014 until May 2016 at Memorial Sloan Kettering Cancer Center, 10 336 patients consented to tumor DNA sequencing. Since May 2015, 1040 of these patients with advanced cancer were referred by their oncologists for germline analysis of 76 cancer predisposition genes. Patients with clinically actionable inherited mutations whose genetic test results would not have been predicted by published decision rules were identified. Follow-up for potential clinical implications of mutation detection was through May 2017. Exposure Tumor and germline sequencing compared with the predicted yield of targeted germline sequencing based on clinical guidelines. Main Outcomes and Measures Proportion of clinically actionable germline mutations detected by universal tumor-normal sequencing that would not have been detected by guideline-directed testing. Results Of 1040 patients, the median age was 58 years (interquartile range, 50.5-66 years), 65.3% were male, and 81.3% had stage IV disease at the time of genomic analysis, with prostate, renal, pancreatic, breast, and colon cancer as the most common diagnoses. Of the 1040 patients, 182 (17.5%; 95% CI, 15.3%-19.9%) had clinically actionable mutations conferring cancer susceptibility, including 149 with moderate- to high-penetrance mutations; 101 patients tested (9.7%; 95% CI, 8.1%-11.7%) would not have had these mutations detected using clinical guidelines, including 65 with moderate- to high-penetrance mutations. Frequency of inherited mutations was related to case mix, stage, and founder mutations. Germline findings led to discussion or initiation of change to targeted therapy in 38 patients tested (3.7%) and predictive testing in the families of 13 individuals (1.3%), including 6 for whom genetic evaluation would not have been initiated by guideline-based testing. Conclusions and Relevance In this referral population with selected advanced cancers, universal sequencing of a broad panel of cancer-related genes in paired germline and tumor DNA samples was associated with increased detection of individuals with potentially clinically significant heritable mutations over the predicted yield of targeted germline testing based on current clinical guidelines. Knowledge of these additional mutations can help guide therapeutic and preventive interventions, but whether all of these interventions would improve outcomes for patients with cancer or their family members requires further study. Trial Registration clinicaltrials.gov Identifier: NCT01775072
Breast Cancer Research | 2013
Melissa C. Southey; Daniel J. Park; Tú Nguyen-Dumont; Ian G. Campbell; Ella R. Thompson; Alison H. Trainer; Georgia Chenevix-Trench; Jacques Simard; Martine Dumont; Penny Soucy; Mads Thomassen; Lars Jønson; Inge Søkilde Pedersen; Thomas V O Hansen; Heli Nevanlinna; Sofia Khan; Olga M. Sinilnikova; Sylvie Mazoyer; Fabienne Lesueur; Francesca Damiola; Rita K. Schmutzler; Alfons Meindl; Eric Hahnen; Michael R. Dufault; T. L. Chris Chan; Ava Kwong; Rosa B. Barkardottir; Paolo Radice; Paolo Peterlongo; Peter Devilee
Linkage analysis, positional cloning, candidate gene mutation scanning and genome-wide association study approaches have all contributed significantly to our understanding of the underlying genetic architecture of breast cancer. Taken together, these approaches have identified genetic variation that explains approximately 30% of the overall familial risk of breast cancer, implying that more, and likely rarer, genetic susceptibility alleles remain to be discovered.
Nature Communications | 2017
Philip J. Law; Sonja I. Berndt; Helen E. Speedy; Nicola J. Camp; Georgina P. Sava; Christine F. Skibola; Amy Holroyd; Vijai Joseph; Nicola J. Sunter; Alexandra Nieters; Sílvia Beà; Alain Monnereau; David Martín-García; Lynn R. Goldin; Guillem Clot; Lauren R. Teras; Inés Quintela; Brenda M. Birmann; Sandrine Jayne; Wendy Cozen; Aneela Majid; Karin E. Smedby; Qing Lan; Claire Dearden; Angela Brooks-Wilson; Andrew G. Hall; Mark P. Purdue; Tryfonia Mainou-Fowler; Claire M. Vajdic; Graham Jackson
Several chronic lymphocytic leukaemia (CLL) susceptibility loci have been reported; however, much of the heritable risk remains unidentified. Here we perform a meta-analysis of six genome-wide association studies, imputed using a merged reference panel of 1,000 Genomes and UK10K data, totalling 6,200 cases and 17,598 controls after replication. We identify nine risk loci at 1p36.11 (rs34676223, P=5.04 × 10−13), 1q42.13 (rs41271473, P=1.06 × 10−10), 4q24 (rs71597109, P=1.37 × 10−10), 4q35.1 (rs57214277, P=3.69 × 10−8), 6p21.31 (rs3800461, P=1.97 × 10−8), 11q23.2 (rs61904987, P=2.64 × 10−11), 18q21.1 (rs1036935, P=3.27 × 10−8), 19p13.3 (rs7254272, P=4.67 × 10−8) and 22q13.33 (rs140522, P=2.70 × 10−9). These new and established risk loci map to areas of active chromatin and show an over-representation of transcription factor binding for the key determinants of B-cell development and immune response.
PLOS ONE | 2014
Shabeesh Balan; Sumitha Prameela Bharathan; Neetha Nanoth Vellichiramal; Sanish Sathyan; Vijai Joseph; Kurupath Radhakrishnan; Moinak Banerjee
Epilepsy constitutes a heterogeneous group of disorders that is characterized by recurrent unprovoked seizures due to widely different etiologies. Multidrug resistance remains a major issue in clinical epileptology, where one third of patients with epilepsy continue to have seizures. Role of efflux transporters in multidrug resistant epilepsy has been attributed to drug-resistant epilepsy although, with discrepant observation in genetic studies. These discrepancies could be attributed to variety of factors such as variable definition of the anti-epileptic drug (AED)-resistance, variable epilepsy phenotypes and ethnicities among the studies. In the present study we inquired the role of multidrug transporters ABCB1 and ABCG2 variants in determining AED-resistance and susceptibility to epilepsy in three well-characterized cohorts comprising of mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE-HS) (prototype for AED-resistant epilepsy); juvenile myoclonic epilepsy (JME) (prototype for AED-responsive epilepsy); and healthy non-epileptic controls, in 738 subjects of Malayalam speaking south Indian ancestry. ABCB1 and ABCG2 variants were not found to be associated with drug resistance when AED-resistant and AED-responsive cohorts were compared. However, a significant association was observed between ABCB1 (C3435T) rs1045642 and risk of having epilepsy (MTLE-HS and JME pooled cohort; genotypic p-value = 0.0002; allelic p-value = 0.004). This association was seen persistent with MTLE-HS (genotypic p-value = 0.0008; allelic p-value = 0.004) and also with JME (genotypic p-value = 0.01; allelic p-value = 0.05) cohort individually. In-silico functional prediction indicated that ABCB1 rs1045642 has a deleterious impact on protein coding function and in splicing regulation. We conclude that the ABCB1 and ABCG2 variants do not confer to AED-resistance in the study population. However, ABCB1 rs1045642 increases vulnerability to epilepsy with greater tendency for MTLE-HS in south Indian ancestry from Kerala.
PLOS Genetics | 2018
Rosalie Waller; Todd M. Darlington; Xiaomu Wei; Michael J Madsen; Alun Thomas; Karen Curtin; Hilary Coon; Venkatesh Rajamanickam; Justin Musinsky; David Jayabalan; Djordje Atanackovic; S. Vincent Rajkumar; Shaji Kumar; Susan L. Slager; Mridu Middha; Perrine Galia; Delphine Demangel; Mohamed E. Salama; Vijai Joseph; James D. McKay; Kenneth Offit; Robert J. Klein; Steven M. Lipkin; Charles Dumontet; Celine M. Vachon; Nicola J. Camp
The high-risk pedigree (HRP) design is an established strategy to discover rare, highly-penetrant, Mendelian-like causal variants. Its success, however, in complex traits has been modest, largely due to challenges of genetic heterogeneity and complex inheritance models. We describe a HRP strategy that addresses intra-familial heterogeneity, and identifies inherited segments important for mapping regulatory risk. We apply this new Shared Genomic Segment (SGS) method in 11 extended, Utah, multiple myeloma (MM) HRPs, and subsequent exome sequencing in SGS regions of interest in 1063 MM / MGUS (monoclonal gammopathy of undetermined significance–a precursor to MM) cases and 964 controls from a jointly-called collaborative resource, including cases from the initial 11 HRPs. One genome-wide significant 1.8 Mb shared segment was found at 6q16. Exome sequencing in this region revealed predicted deleterious variants in USP45 (p.Gln691* and p.Gln621Glu), a gene known to influence DNA repair through endonuclease regulation. Additionally, a 1.2 Mb segment at 1p36.11 is inherited in two Utah HRPs, with coding variants identified in ARID1A (p.Ser90Gly and p.Met890Val), a key gene in the SWI/SNF chromatin remodeling complex. Our results provide compelling statistical and genetic evidence for segregating risk variants for MM. In addition, we demonstrate a novel strategy to use large HRPs for risk-variant discovery more generally in complex traits.
Cancer Research | 2018
Xiaomu Wei; M. Nieves Calvo-Vidal; Siwei Chen; Gang Wu; María Victoria Revuelta; Jian Sun; Jinghui Zhang; Michael F. Walsh; Kim E. Nichols; Vijai Joseph; Carrie Snyder; Celine M. Vachon; James D. McKay; Shu-Ping Wang; David Jayabalan; Lauren Jacobs; Dina Becirovic; Rosalie Waller; Mykyta Artomov; Agnes Viale; Jayeshkumar Patel; Jude M. Phillip; Selina Chen-Kiang; Karen Curtin; Mohamed E. Salama; Djordje Atanackovic; Ruben Niesvizky; Ola Landgren; Susan L. Slager; Lucy A. Godley
Given the frequent and largely incurable occurrence of multiple myeloma, identification of germline genetic mutations that predispose cells to multiple myeloma may provide insight into disease etiology and the developmental mechanisms of its cell of origin, the plasma cell (PC). Here, we identified familial and early-onset multiple myeloma kindreds with truncating mutations in lysine-specific demethylase 1 (LSD1/KDM1A), an epigenetic transcriptional repressor that primarily demethylates histone H3 on lysine 4 and regulates hematopoietic stem cell self-renewal. In addition, we found higher rates of germline truncating and predicted deleterious missense KDM1A mutations in patients with multiple myeloma unselected for family history compared with controls. Both monoclonal gammopathy of undetermined significance (MGUS) and multiple myeloma cells have significantly lower KDM1A transcript levels compared with normal PCs. Transcriptome analysis of multiple myeloma cells from KDM1A mutation carriers shows enrichment of pathways and MYC target genes previously associated with myeloma pathogenesis. In mice, antigen challenge followed by pharmacologic inhibition of KDM1A promoted PC expansion, enhanced secondary immune response, elicited appearance of serum paraprotein, and mediated upregulation of MYC transcriptional targets. These changes are consistent with the development of MGUS. Collectively, our findings show that KDM1A is the first autosomal-dominant multiple myeloma germline predisposition gene providing new insights into its mechanistic roles as a tumor suppressor during post-germinal center B-cell differentiation.Significance: KDM1A is the first germline autosomal dominant predisposition gene identified in multiple myeloma and provides new insights into multiple myeloma etiology and the mechanistic role of KDM1A as a tumor suppressor during post-germinal center B-cell differentiation. Cancer Res; 78(10); 2747-59. ©2018 AACR.
bioRxiv | 2018
Vignesh Ravichandran; Zarina Shameer; Yelena Kemel; Michael F. Walsh; Karen Anne Cadoo; Steven M. Lipkin; Diana Mandelker; Liying Zhang; Zsofia K. Stadler; Mark E. Robson; Kenneth Offit; Vijai Joseph
Cancer care professionals are confronted with interpreting results from multiplexed gene sequencing of patients at hereditary risk for cancer. Assessments for variant classification now require orthogonal data searches, requiring aggregation of multiple lines of evidence from diverse resources. The burden of evidence for each variant to meet thresholds for pathogenicity or actionability now poses a growing challenge for those seeking to counsel patients and families following germline genetic testing. A computational algorithm that automates, provides uniformity and significantly accelerates this interpretive process is needed. The tool described here, Pathogenicity of Mutation Analyzer (PathoMAN) automates germline genomic variant curation from clinical sequencing based on ACMG guidelines. PathoMAN aggregates multiple tracks of genomic, protein and disease specific information from public sources. We compared expert manually curated variant data from studies on (i) prostate cancer (ii) breast cancer and (iii) ClinVar to assess performance. PathoMAN achieves high concordance (83.1% pathogenic, 75.5% benign) and negligible discordance (0.04% pathogenic, 0.9% benign) when contrasted against expert curation. Some loss of resolution (8.6% pathogenic, 23.64% benign) and gain of resolution (6.6% pathogenic, 1.6% benign) was also observed. We highlight the advantages and weaknesses related to the programmable automation of variant classification. We also propose a new nosology for the five ACMG classes to facilitate more accurate reporting to ClinVar. The proposed refinements will enhance utility of ClinVar to allow further automation in cancer genetics. PathoMAN will reduce the manual workload of domain level experts. It provides a substantial advance in rapid classification of genetic variants by generating robust models using a knowledge-base of diverse genetic data https://pathoman.mskcc.org.