Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vijay G. Sankaran is active.

Publication


Featured researches published by Vijay G. Sankaran.


Science | 2008

Human Fetal Hemoglobin Expression Is Regulated by the Developmental Stage- Specific Repressor BCL11A

Vijay G. Sankaran; Tobias F. Menne; Jian Xu; Thomas E. Akie; Guillaume Lettre; Ben Van Handel; Hanna Mikkola; Joel N. Hirschhorn; Alan Cantor; Stuart H. Orkin

Differences in the amount of fetal hemoglobin (HbF) that persists into adulthood affect the severity of sickle cell disease and the β-thalassemia syndromes. Genetic association studies have identified sequence variants in the gene BCL11A that influence HbF levels. Here, we examine BCL11A as a potential regulator of HbF expression. The high-HbF BCL11A genotype is associated with reduced BCL11A expression. Moreover, abundant expression of full-length forms of BCL11A is developmentally restricted to adult erythroid cells. Down-regulation of BCL11A expression in primary adult erythroid cells leads to robust HbF expression. Consistent with a direct role of BCL11A in globin gene regulation, we find that BCL11A occupies several discrete sites in the β-globin gene cluster. BCL11A emerges as a therapeutic target for reactivation of HbF in β-hemoglobin disorders.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Genome-wide association study shows BCL11A associated with persistent fetal hemoglobin and amelioration of the phenotype of -thalassemia

Manuela Uda; Renzo Galanello; Serena Sanna; Guillaume Lettre; Vijay G. Sankaran; Wei-Min Chen; Gianluca Usala; Fabio Busonero; Andrea Maschio; Giuseppe Albai; Maria Grazia Piras; Natascia Sestu; Sandra Lai; Mariano Dei; Antonella Mulas; Laura Crisponi; Silvia Naitza; Isadora Asunis; Manila Deiana; Ramaiah Nagaraja; Lucia Perseu; Stefania Satta; Maria Dolores Cipollina; Carla Sollaino; Paolo Moi; Joel N. Hirschhorn; Stuart H. Orkin; Gonçalo R. Abecasis; David Schlessinger; Antonio Cao

β-Thalassemia and sickle cell disease both display a great deal of phenotypic heterogeneity, despite being generally thought of as simple Mendelian diseases. The reasons for this are not well understood, although the level of fetal hemoglobin (HbF) is one well characterized ameliorating factor in both of these conditions. To better understand the genetic basis of this heterogeneity, we carried out genome-wide scans with 362,129 common SNPs on 4,305 Sardinians to look for genetic linkage and association with HbF levels, as well as other red blood cell-related traits. Among major variants affecting HbF levels, SNP rs11886868 in the BCL11A gene was strongly associated with this trait (P < 10−35). The C allele frequency was significantly higher in Sardinian individuals with elevated HbF levels, detected by screening for β-thalassemia, and patients with attenuated forms of β-thalassemia vs. those with thalassemia major. We also show that the same BCL11A variant is strongly associated with HbF levels in a large cohort of sickle cell patients. These results indicate that BCL11A variants, by modulating HbF levels, act as an important ameliorating factor of the β-thalassemia phenotype, and it is likely they could help ameliorate other hemoglobin disorders. We expect our findings will help to characterize the molecular mechanisms of fetal globin regulation and could eventually contribute to the development of new therapeutic approaches for β-thalassemia and sickle cell anemia.


Proceedings of the National Academy of Sciences of the United States of America | 2008

DNA polymorphisms at the BCL11A, HBS1L-MYB, and β-globin loci associate with fetal hemoglobin levels and pain crises in sickle cell disease

Guillaume Lettre; Vijay G. Sankaran; Marcos André Cavalcanti Bezerra; Aderson S. Araújo; Manuela Uda; Serena Sanna; Antonio Cao; David Schlessinger; Fernando Ferreira Costa; Joel N. Hirschhorn; Stuart H. Orkin

Sickle cell disease (SCD) is a debilitating monogenic blood disorder with a highly variable phenotype characterized by severe pain crises, acute clinical events, and early mortality. Interindividual variation in fetal hemoglobin (HbF) expression is a known and potentially heritable modifier of SCD severity. High HbF levels are correlated with reduced morbidity and mortality. Common single nucleotide polymorphisms (SNPs) at the BCL11A and HBS1L-MYB loci have been implicated previously in HbF level variation in nonanemic European populations. We recently demonstrated an association between a BCL11A SNP and HbF levels in one SCD cohort [Uda M, et al. (2008) Proc Natl Acad Sci USA 105:1620–1625]. Here, we genotyped additional BCL11A SNPs, HBS1L-MYB SNPs, and an SNP upstream of Gγ-globin (HBG2; the XmnI polymorphism), in two independent SCD cohorts: the African American Cooperative Study of Sickle Cell Disease (CSSCD) and an SCD cohort from Brazil. We studied the effect of these SNPs on HbF levels and on a measure of SCD-related morbidity (pain crisis rate). We strongly replicated the association between these SNPs and HbF level variation (in the CSSCD, P values range from 0.04 to 2 × 10−42). Together, common SNPs at the BCL11A, HBS1L-MYB, and β-globin (HBB) loci account for >20% of the variation in HbF levels in SCD patients. We also have shown that HbF-associated SNPs associate with pain crisis rate in SCD patients. These results provide a clear example of inherited common sequence variants modifying the severity of a monogenic disease.


Nature | 2009

Developmental and species-divergent globin switching are driven by BCL11A

Vijay G. Sankaran; Jian Xu; Tobias Ragoczy; Gregory C. Ippolito; Carl R. Walkley; Shanna D. Maika; Yuko Fujiwara; Masafumi Ito; Mark Groudine; Michael Bender; Philip W. Tucker; Stuart H. Orkin

The contribution of changes in cis-regulatory elements or trans-acting factors to interspecies differences in gene expression is not well understood. The mammalian β-globin loci have served as a model for gene regulation during development. Transgenic mice containing the human β-globin locus, consisting of the linked embryonic (ε), fetal (γ) and adult (β) genes, have been used as a system to investigate the temporal switch from fetal to adult haemoglobin, as occurs in humans. Here we show that the human γ-globin (HBG) genes in these mice behave as murine embryonic globin genes, revealing a limitation of the model and demonstrating that critical differences in the trans-acting milieu have arisen during mammalian evolution. We show that the expression of BCL11A, a repressor of human γ-globin expression identified by genome-wide association studies, differs between mouse and human. Developmental silencing of the mouse embryonic globin and human γ-globin genes fails to occur in mice in the absence of BCL11A. Thus, BCL11A is a critical mediator of species-divergent globin switching. By comparing the ontogeny of β-globin gene regulation in mice and humans, we have shown that alterations in the expression of a trans-acting factor constitute a critical driver of gene expression changes during evolution.


Genes & Development | 2010

Transcriptional silencing of γ-globin by BCL11A involves long-range interactions and cooperation with SOX6

Jian Xu; Vijay G. Sankaran; Min Ni; Tobias F. Menne; Rishi V. Puram; Woojin Kim; Stuart H. Orkin

The developmental switch from human fetal (gamma) to adult (beta) hemoglobin represents a clinically important example of developmental gene regulation. The transcription factor BCL11A is a central mediator of gamma-globin silencing and hemoglobin switching. Here we determine chromatin occupancy of BCL11A at the human beta-globin locus and other genomic regions in vivo by high-resolution chromatin immunoprecipitation (ChIP)-chip analysis. BCL11A binds the upstream locus control region (LCR), epsilon-globin, and the intergenic regions between gamma-globin and delta-globin genes. A chromosome conformation capture (3C) assay shows that BCL11A reconfigures the beta-globin cluster by modulating chromosomal loop formation. We also show that BCL11A and the HMG-box-containing transcription factor SOX6 interact physically and functionally during erythroid maturation. BCL11A and SOX6 co-occupy the human beta-globin cluster along with GATA1, and cooperate in silencing gamma-globin transcription in adult human erythroid progenitors. These findings collectively demonstrate that transcriptional silencing of gamma-globin genes by BCL11A involves long-range interactions and cooperation with SOX6. Our findings provide insight into the mechanism of BCL11A action and new clues for the developmental gene regulatory programs that function at the beta-globin locus.


Genes & Development | 2008

Conditional mouse osteosarcoma, dependent on p53 loss and potentiated by loss of Rb, mimics the human disease.

Carl R. Walkley; Rameez Qudsi; Vijay G. Sankaran; Jennifer A. Perry; Monica Gostissa; Sanford I. Roth; Stephen J. Rodda; Erin Snay; Patricia Dunning; Frederic H. Fahey; Frederick W. Alt; Andrew P. McMahon; Stuart H. Orkin

Osteosarcoma is the most common primary malignant tumor of bone. Analysis of familial cancer syndromes and sporadic cases has strongly implicated both p53 and pRb in its pathogenesis; however, the relative contribution of these mutations to the initiation of osteosarcoma is unclear. We describe here the generation and characterization of a genetically engineered mouse model in which all animals develop short latency malignant osteosarcoma. The genetically engineered mouse model is based on osteoblast-restricted deletion of p53 and pRb. Osteosarcoma development is dependent on loss of p53 and potentiated by loss of pRb, revealing a dominance of p53 mutation in the development of osteosarcoma. The model reproduces many of the defining features of human osteosarcoma including cytogenetic complexity and comparable gene expression signatures, histology, and metastatic behavior. Using a novel in silico methodology termed cytogenetic region enrichment analysis, we demonstrate high conservation of gene expression changes between murine osteosarcoma and known cytogentically rearranged loci from human osteosarcoma. Due to the strong similarity between murine osteosarcoma and human osteosarcoma in this model, this should provide a valuable platform for addressing the molecular genetics of osteosarcoma and for developing novel therapeutic strategies.


Science | 2011

Correction of Sickle Cell Disease in Adult Mice by Interference with Fetal Hemoglobin Silencing

Jian Xu; Cong Peng; Vijay G. Sankaran; Zhen Shao; Erica B. Esrick; Bryan G. Chong; Gregory C. Ippolito; Yuko Fujiwara; Benjamin L. Ebert; Philip W. Tucker; Stuart H. Orkin

Manipulation of a transcriptional repressor promotes expression of protective fetal globin genes. Persistence of human fetal hemoglobin (HbF, α2γ2) in adults lessens the severity of sickle cell disease (SCD) and the β-thalassemias. Here, we show that the repressor BCL11A is required in vivo for silencing of γ-globin expression in adult animals, yet dispensable for red cell production. BCL11A serves as a barrier to HbF reactivation by known HbF inducing agents. In a proof-of-principle test of BCL11A as a potential therapeutic target, we demonstrate that inactivation of BCL11A in SCD transgenic mice corrects the hematologic and pathologic defects associated with SCD through high-level pancellular HbF induction. Thus, interference with HbF silencing by manipulation of a single target protein is sufficient to reverse SCD.


Journal of Clinical Investigation | 2012

Exome sequencing identifies GATA1 mutations resulting in Diamond-Blackfan anemia

Vijay G. Sankaran; Roxanne Ghazvinian; Ron Do; Prathapan Thiru; Jo-Anne Vergilio; Alan H. Beggs; Colin A. Sieff; Stuart H. Orkin; David G. Nathan; Eric S. Lander; Hanna T. Gazda

Diamond-Blackfan anemia (DBA) is a hypoplastic anemia characterized by impaired production of red blood cells, with approximately half of all cases attributed to ribosomal protein gene mutations. We performed exome sequencing on two siblings who had no known pathogenic mutations for DBA and identified a mutation in the gene encoding the hematopoietic transcription factor GATA1. This mutation, which occurred at a splice site of the GATA1 gene, impaired production of the full-length form of the protein. We further identified an additional patient carrying a distinct mutation at the same splice site of the GATA1 gene. These findings provide insight into the pathogenesis of DBA, showing that the reduction in erythropoiesis associated with the disease can arise from causes other than defects in ribosomal protein genes. These results also illustrate the multifactorial role of GATA1 in human hematopoiesis.


Nature Genetics | 2010

Fine-mapping at three loci known to affect fetal hemoglobin levels explains additional genetic variation

Geneviève Galarneau; C. Palmer; Vijay G. Sankaran; Stuart H. Orkin; Joel N. Hirschhorn; Guillaume Lettre

We used resequencing and genotyping in African Americans with sickle cell anemia (SCA) to characterize associations with fetal hemoglobin (HbF) levels at the BCL11A, HBS1L-MYB and β-globin loci. Fine-mapping of HbF association signals at these loci confirmed seven SNPs with independent effects and increased the explained heritable variation in HbF levels from 38.6% to 49.5%. We also identified rare missense variants that causally implicate MYB in HbF production.


Proceedings of the National Academy of Sciences of the United States of America | 2011

MicroRNA-15a and -16-1 act via MYB to elevate fetal hemoglobin expression in human trisomy 13.

Vijay G. Sankaran; Tobias F. Menne; Danilo Šćepanović; Jo Anne Vergilio; Peng Ji; Jinkuk Kim; Prathapan Thiru; Stuart H. Orkin; Eric S. Lander; Harvey F. Lodish

Many human aneuploidy syndromes have unique phenotypic consequences, but in most instances it is unclear whether these phenotypes are attributable to alterations in the dosage of specific genes. In human trisomy 13, there is delayed switching and persistence of fetal hemoglobin (HbF) and elevation of embryonic hemoglobin in newborns. Using partial trisomy cases, we mapped this trait to chromosomal band 13q14; by examining the genes in this region, two microRNAs, miR-15a and -16-1, appear as top candidates for the elevated HbF levels. Indeed, increased expression of these microRNAs in primary human erythroid progenitor cells results in elevated fetal and embryonic hemoglobin gene expression. Moreover, we show that a direct target of these microRNAs, MYB, plays an important role in silencing the fetal and embryonic hemoglobin genes. Thus we demonstrate how the developmental regulation of a clinically important human trait can be better understood through the genetic and functional study of aneuploidy syndromes and suggest that miR-15a, -16-1, and MYB may be important therapeutic targets to increase HbF levels in patients with sickle cell disease and β-thalassemia.

Collaboration


Dive into the Vijay G. Sankaran's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carl R. Walkley

St. Vincent's Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jian Xu

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Harvey F. Lodish

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge