Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vijay Mistry is active.

Publication


Featured researches published by Vijay Mistry.


American Journal of Respiratory and Critical Care Medicine | 2011

Acute exacerbations of chronic obstructive pulmonary disease: identification of biologic clusters and their biomarkers.

Mona Bafadhel; Susan McKenna; Sarah Terry; Vijay Mistry; Carlene Reid; Pranabashis Haldar; Margaret McCormick; Koirobi Haldar; Tatiana Kebadze; Annelyse Duvoix; Kerstin Lindblad; Hemu Patel; Paul Rugman; Paul Dodson; Martin Jenkins; Michael Saunders; Paul Newbold; Ruth H. Green; Per Venge; David A. Lomas; Michael R. Barer; Sebastian L. Johnston; Ian D. Pavord; Christopher E. Brightling

RATIONALE Exacerbations of chronic obstructive pulmonary disease (COPD) are heterogeneous with respect to inflammation and etiology. OBJECTIVES Investigate biomarker expression in COPD exacerbations to identify biologic clusters and determine biomarkers that recognize clinical COPD exacerbation phenotypes, namely those associated with bacteria, viruses, or eosinophilic airway inflammation. METHODS Patients with COPD were observed for 1 year at stable and exacerbation visits. Biomarkers were measured in sputum and serum. Viruses and selected bacteria were assessed in sputum by polymerase chain reaction and routine diagnostic bacterial culture. Biologic phenotypes were explored using unbiased cluster analysis and biomarkers that differentiated clinical exacerbation phenotypes were investigated. MEASUREMENTS AND MAIN RESULTS A total of 145 patients (101 men and 44 women) entered the study. A total of 182 exacerbations were captured from 86 patients. Four distinct biologic exacerbation clusters were identified. These were bacterial-, viral-, or eosinophilic-predominant, and a fourth associated with limited changes in the inflammatory profile termed “pauciinflammatory.” Of all exacerbations, 55%, 29%, and 28% were associated with bacteria, virus, or a sputum eosinophilia. The biomarkers that best identified these clinical phenotypes were sputum IL-1β, 0.89 (area under receiver operating characteristic curve) (95% confidence interval [CI], 0.83–0.95); serum CXCL10, 0.83 (95% CI, 0.70–0.96); and percentage peripheral eosinophils, 0.85 (95% CI, 0.78–0.93), respectively. CONCLUSIONS The heterogeneity of the biologic response of COPD exacerbations can be defined. Sputum IL-1β, serum CXCL10, and peripheral eosinophils are biomarkers of bacteria-, virus-, or eosinophil-associated exacerbations of COPD. Whether phenotype-specific biomarkers can be applied to direct therapy warrants further investigation.


Chest | 2010

Expression of the T Helper 17-Associated Cytokines IL-17A and IL-17F in Asthma and COPD

Camille Doe; Mona Bafadhel; Salman Siddiqui; Dhananjay Desai; Vijay Mistry; Paul Rugman; Margaret McCormick; Joanne Woods; Richard May; Matthew A. Sleeman; Ian K. Anderson; Christopher E. Brightling

Background: Asthma and COPD are characterized by airway dysfunction and inflammation. Neutrophilic airway inflammation is a common feature of COPD and is recognized in asthma, particularly in severe disease. The T helper (Th) 17 cytokines IL-17A and IL-17F have been implicated in the development of neutrophilic airway inflammation, but their expression in asthma and COPD is uncertain. Methods: We assessed IL-17A and IL-17F expression in the bronchial submucosa from 30 subjects with asthma, 10 ex-smokers with mild to moderate COPD, and 27 nonsmoking and 14 smoking control subjects. Sputum IL-17 concentration was measured in 165 subjects with asthma and 27 with COPD. Results: The median (interquartile range) IL-17A cells/mm2 submucosa was increased in mild to moderate asthma (2.1 [2.4]) compared with healthy control subjects (0.4 [2.8]) but not in severe asthma (P = .04). In COPD, IL-17A+ cells/mm2 submucosa were increased (0.5 [3.7]) compared with nonsmoking control subjects (0 [0]) but not compared with smoking control subjects (P = .046). IL-17F+ cells/mm2 submucosa were increased in severe asthma (2.7 [3.6]) and mild to moderate asthma (1.6 [1.0]) compared with healthy controls subjects (0.7 [1.4]) (P = .001) but was not increased in subjects with COPD. IL-17A and IL-17F were not associated with increased neutrophilic inflammation, but IL-17F was correlated with the submucosal eosinophil count (rs = 0.5, P = .005). The sputum IL-17 concentration in COPD was increased compared with asthma (2 [0-7] pg/mL vs 0 [0-2] pg/mL, P < .0001) and was correlated with post-bronchodilator FEV1% predicted (r = −0.5, P = .008) and FEV1/FVC (r = −0.4, P = .04). Conclusions: Our findings support a potential role for the Th17 cytokines IL-17A and IL-17F in asthma and COPD, but do not demonstrate a relationship with neutrophilic inflammation.


American Journal of Respiratory and Critical Care Medicine | 2012

Blood Eosinophils to Direct Corticosteroid Treatment of Exacerbations of Chronic Obstructive Pulmonary Disease A Randomized Placebo-Controlled Trial

Mona Bafadhel; Susan McKenna; Sarah Terry; Vijay Mistry; Mitesh Pancholi; Per Venge; David A. Lomas; Michael R. Barer; Sebastian L. Johnston; Ian D. Pavord; Christopher E. Brightling

RATIONALE Exacerbations of chronic obstructive pulmonary disease (COPD) and responses to treatment are heterogeneous. OBJECTIVES Investigate the usefulness of blood eosinophils to direct corticosteroid therapy during exacerbations. METHODS Subjects with COPD exacerbations were entered into a randomized biomarker-directed double-blind corticosteroid versus standard therapy study. Subjects in the standard arm received prednisolone for 2 weeks, whereas in the biomarker-directed arm, prednisolone or matching placebo was given according to the blood eosinophil count biomarker. Both study groups received antibiotics. Blood eosinophils were measured in the biomarker-directed and standard therapy arms to define biomarker-positive and -negative exacerbations (blood eosinophil count > and ≤ 2%, respectively). The primary outcome was to determine noninferiority in health status using the chronic respiratory questionnaire (CRQ) and in the proportion of exacerbations associated with a treatment failure between subjects allocated to the biomarker-directed and standard therapy arms. MEASUREMENTS AND MAIN RESULTS There were 86 and 80 exacerbations in the biomarker-directed and standard treatment groups, respectively. In the biomarker-directed group, 49% of the exacerbations were not treated with prednisolone. CRQ improvement after treatment in the standard and biomarker-directed therapy groups was similar (0.8 vs. 1.1; mean difference, 0.3; 95% confidence interval, 0.0-0.6; P = 0.05). There was a greater improvement in CRQ in biomarker-negative exacerbations given placebo compared with those given prednisolone (mean difference, 0.45; 95% confidence interval, 0.01-0.90; P = 0.04). In biomarker-negative exacerbations, treatment failures occurred in 15% given prednisolone and 2% of those given placebo (P = 0.04). CONCLUSIONS The peripheral blood eosinophil count is a promising biomarker to direct corticosteroid therapy during COPD exacerbations, but larger studies are required.


The Journal of Allergy and Clinical Immunology | 2008

Airway hyperresponsiveness is dissociated from airway wall structural remodeling.

Salman Siddiqui; Vijay Mistry; Camille Doe; Katy Roach; Angela Morgan; Andrew J. Wardlaw; Ian D. Pavord; Peter Bradding; Christopher E. Brightling

BACKGROUND Nonasthmatic eosinophilic bronchitis (EB) has emerged as a useful tool to study the structural and inflammatory mechanisms of airway hyperresponsiveness (AHR) in asthma. We have previously shown that vascular remodeling and reticular basement membrane (RBM) thickening are present in EB. However, it is not known whether other features of structural remodeling including increased airway smooth muscle (ASM) mass, matrix deposition, and glandular hyperplasia are also present in EB. OBJECTIVES We sought to determine whether structural remodeling occurs in EB and is associated with AHR and airflow limitation. METHODS Forty-two patients with asthma, 21 patients with EB, and 19 healthy volunteers were recruited. ASM area, RBM thickness, collagen 3 deposition, glandular area, mast cells, and granulocytes were assessed in bronchial biopsy samples. RESULTS Nonasthmatic eosinophilic bronchitis and asthma were associated with a significant increase in ASM mass and RBM thickness compared with healthy subjects. In contrast, we did not observe any significant differences in collagen 3 deposition in the lamina propria and ASM or the % area of glands in the lamina propria. Univariate analysis demonstrated that mast cell numbers in the ASM were the only feature of remodeling associated with AHR (beta = -0.51; P = .004). Stepwise linear regression revealed that a combination of mast cell numbers in the ASM (beta = -0.43) and disease duration (beta = -0.25; model-adjusted R(2) = 0.26; P = .027) best modeled AHR. CONCLUSION Mast cell localization to the ASM bundle, but not structural remodeling of the airway wall, is associated with AHR in asthma.


The Lancet Respiratory Medicine | 2016

Fevipiprant, a prostaglandin D2 receptor 2 antagonist, in patients with persistent eosinophilic asthma: a single-centre, randomised, double-blind, parallel-group, placebo-controlled trial

Sherif Gonem; Rachid Berair; Amisha Singapuri; Ruth Hartley; Marie Laurencin; Gerald Bacher; Björn Holzhauer; Michelle Bourne; Vijay Mistry; Ian D. Pavord; Adel Mansur; Andrew J. Wardlaw; Salman Siddiqui; Richard Kay; Christopher E. Brightling

BACKGROUND Eosinophilic airway inflammation is often present in asthma, and reduction of such inflammation results in improved clinical outcomes. We hypothesised that fevipiprant (QAW039), an antagonist of prostaglandin D2 receptor 2, might reduce eosinophilic airway inflammation in patients with moderate-to-severe eosinophilic asthma. METHODS We performed a single-centre, randomised, double-blind, parallel-group, placebo-controlled trial at Glenfield Hospital (Leicester, UK). We recruited patients with persistent, moderate-to-severe asthma and an elevated sputum eosinophil count (≥2%). After a 2-week single-blind placebo run-in period, patients were randomly assigned (1:1) by the trial pharmacist, using previously generated treatment allocation cards, to receive fevipiprant (225 mg twice per day orally) or placebo, stratified by the use of oral corticosteroid treatment and bronchoscopy. The 12-week treatment period was followed by a 6-week single-blind placebo washout period. The primary outcome was the change in sputum eosinophil percentage from baseline to 12 weeks after treatment, analysed in the intention-to-treat population. All patients who received at least one dose of study drug were included in the safety analyses. This trial is registered with ClinicalTrials.gov, number NCT01545726, and with EudraCT, number 2011-004966-13. FINDINGS Between Feb 10, 2012, and Jan 30, 2013, 61 patients were randomly assigned to receive fevipiprant (n=30) or placebo (n=31). Three patients in the fevipiprant group and four patients in the placebo group withdrew because of asthma exacerbations. Two patients in the fevipiprant group were incorrectly given placebo (one at the mid-treatment visit and one throughout the course of the study). They were both included in the fevipiprant group for the primary analysis, but the patient who was incorrectly given placebo throughout was included in the placebo group for the safety analyses. Between baseline and 12 weeks after treatment, sputum eosinophil percentage decreased from a geometric mean of 5·4% (95% CI 3·1-9·6) to 1·1% (0·7-1·9) in the fevipiprant group and from 4·6% (2·5-8·7) to 3·9% (CI 2·3-6·7) in the placebo group. Compared with baseline, mean sputum eosinophil percentage was reduced by 4·5 times in the fevipiprant group and by 1·3 times in the placebo group (difference between groups 3·5 times, 95% CI 1·7-7·0; p=0·0014). Fevipiprant had a favourable safety profile, with no deaths or serious adverse events reported. No patient withdrawals were judged by the investigator to be related to the study drug. INTERPRETATION Fevipiprant reduces eosinophilic airway inflammation and is well tolerated in patients with persistent moderate-to-severe asthma and raised sputum eosinophil counts despite inhaled corticosteroid treatment. FUNDING Novartis Pharmaceuticals, AirPROM project, and the UK National Institute for Health Research.


Respiration | 2012

Profiling of Sputum Inflammatory Mediators in Asthma and Chronic Obstructive Pulmonary Disease

Mona Bafadhel; Margaret McCormick; S. Saha; Susan McKenna; M. Shelley; Beverley Hargadon; Vijay Mistry; Carlene Reid; Debbie Parker; Paul Dodson; M. Jenkins; A. Lloyd; Paul Rugman; Paul Newbold; Christopher E. Brightling

Background: Asthma and chronic obstructive pulmonary disease (COPD) display features of overlap in airway physiology and airway inflammation. Whether inflammatory phenotypes in airway disease describe similar mediator expression is unknown. Objectives: To explore the relationship of airway inflammation and cytokine and chemokine expression in asthma and COPD. Methods: Subjects with asthma and COPD (n = 54 and n = 49) were studied. Clinical characteristics and sputum were collected at entry into the study. A 2-step sputum processing method was performed for supernatant and cytospin preparation. Meso Scale Discovery and Luminex platforms were used to measure cytokines, chemokines and matrix metalloproteinase levels. Results: Analytes sensitive to dithiothreitol (DTT) that had increased recovery in the 2-step sputum process were IL-1β, 4, 5, 10, 13, IFN-γ, TNFRI, GM-CSF, CCL2, 3, 4, 5, 13 and 17. There was a differential expression in IL-8, TNFRI and TNFRII between asthma and COPD [mean fold difference (95% CI): IL-8, 2.6 (1.3–5.4), p = 0.01; TNFRI, 2.1 (1.3–5.4), p = 0.03; TNFRII, 2.6 (1.2–5.6), p = 0.02]. In neutrophilic and eosinophilic airway inflammation, TNFα, TNFRI, TNFRII, IL-6, IL-8 and IL-5 could differentiate between these phenotypes. However, these phenotypes were unrelated to the diagnosis of asthma or COPD. Conclusion: Recovery of sputum mediators sensitive to DTT can be improved using the described sputum processing technique. Within airway inflammatory sub-phenotypes there is a differential pattern of mediator expression that is independent of disease. Whether these inflammatory phenotypes in asthma and COPD confer distinct pathogeneses, therapeutic responses and clinical phenotypes needs to be further evaluated.


Thorax | 2009

Granulocyte–macrophage colony-stimulating factor expression in induced sputum and bronchial mucosa in asthma and COPD

S. Saha; Camille Doe; Vijay Mistry; Salman Siddiqui; Debbie Parker; Matthew A. Sleeman; E. S. Cohen; Christopher E. Brightling

Background: Granulocyte–macrophage colony-stimulating factor (GM-CSF) has been implicated as an important mediator in the pathogenesis of asthma and chronic obstructive pulmonary disease (COPD). However, the expression of GM-CSF and its receptor in airway samples in asthma and COPD across disease severity needs to be further defined. Methods: Sputum GM-CSF was measured in 18 control subjects, 45 subjects with asthma and 47 subjects with COPD. Enumeration of GM-CSF+ cells in the bronchial submucosa and airway smooth muscle bundle was performed in 29 control subjects, 36 subjects with asthma and 10 subjects with COPD. Results: The proportion of subjects with measurable GM-CSF in the sputum was raised in those with moderate (7/14) and severe (11/18) asthma, and in those with COPD GOLD (Global Initiative for Chronic Obstructive Lung Disease) stage II (7/16), III (8/17) and IV (7/14) compared with controls (1/18) and those with mild asthma (0/13); p = 0.001. The sputum GM-CSF concentration was correlated with the sputum eosinophilia in subjects with moderate to severe asthma (rs = 0.41; p = 0.018). The median (interquartile range) GM-CSF+ and GM-CSFR+ cells/mm2 of submucosa was increased in severe asthma (1.4 (3.0) and 2.1 (8.4)) compared with those with mild to moderate asthma (0 (2.5) and 1.1 (5)) and healthy controls (0 (0.5) and 0 (1.6)), (p = 0.004 and p = 0.02, respectively). Conclusions: The findings support a potential role for GM-CSF in asthma and COPD and suggest that overexpression of GM-CSF in sputum and the bronchial mucosa is a particular feature of severe asthma.


European Respiratory Journal | 2014

Aspergillus fumigatus during stable state and exacerbations of COPD

Mona Bafadhel; Susan McKenna; Joshua Agbetile; Abbie Fairs; Dhananjay Desai; Vijay Mistry; Joseph P. Morley; Mitesh Pancholi; Ian D. Pavord; Andrew J. Wardlaw; Catherine H. Pashley; Christopher E. Brightling

Bacteria are often isolated in stable chronic obstructive pulmonary disease (COPD). Whether fungi are also commonly present and associated with clinical and pathological features of disease is uncertain. We investigated the frequency of filamentous fungal culture and IgE sensitisation to Aspergillus fumigatus and the relationship to clinical outcomes in COPD subjects. COPD subjects were recruited to enter a 1-year observational study. Assessments of lung function, allergen testing and sputum analysis for inflammation, bacteria and fungus were undertaken in COPD subjects and healthy smoking and nonsmoking controls. Filamentous fungi were cultured at baseline in 49% (63 out of 128) of COPD subjects, of which 75% (47 out of 63) were A. fumigatus. Fungus was cultured in three out of 22 controls (two were A. fumigatus). The total sputum cell count and inhaled corticosteroid dosage were significantly increased in COPD patients with a positive filamentous fungal culture at baseline (p<0.05). Sensitisation to A. fumigatus was present in 13% of COPD subjects and was associated with worse lung function (forced expiratory volume in 1 s 39% predicted versus 51% predicted; p=0.01), but not related to filamentous fungal culture. A. fumigatus sensitisation is related to poor lung function. Positive filamentous fungal culture is a common feature of COPD. The clinical significance of this remains uncertain. A. fumigatus sensitisation links to poor COPD lung function; clinical significance of positive fungal culture is unclear http://ow.ly/qfr5q


Chest | 2010

Airway wall expression of OX40/OX40L and interleukin-4 in asthma.

Salman Siddiqui; Vijay Mistry; Camille Doe; Sally E. Stinson; Martyn Foster; Christopher E. Brightling

Background: The costimulatory molecule OX40 and its ligand, OX40L, mediate key aspects of allergic airway inflammation in animal models of asthma, including eosinophilic airway inflammation, airway hyperresponsiveness, and T helper 2 polarization. We sought to examine OX40/OX40L and interleukin (IL)-4 expression in asthma across severities. Methods: Bronchial biopsies were obtained from 27 subjects with asthma (mild Global Initiative for Asthma [GINA] 1 [n = 10], moderate GINA 2-3 [n = 7], and severe GINA 4-5 [n = 10]) and 13 healthy controls. The number of OX40+, OX40L+, IL-4+, and IL-4 receptor α (IL-4Rα)+ cells in the lamina propria and airway smooth muscle (ASM) bundle and the intensity of IL-4Rα+ expression by the ASM were assessed. Results: The number of OX40+, OX40L+, and IL-4+ cells in the lamina propria and OX40+ and IL-4+ cells in the ASM bundle was significantly increased in subjects with mild asthma, but not in those with moderate or severe asthma, compared with healthy controls. In the subjects with asthma, OX40/OX40L expression was positively correlated with the number of eosinophils and IL-4+ cells in the lamina propria. The number of IL-4Rα+ cells in the lamina propria was significantly increased in moderate-to-severe disease, but not in mild asthma, compared with controls. IL-4Rα expression by the ASM bundle was not different among groups. Conclusions: OX40/OX40L expression is increased in the bronchial submucosa in mild asthma, but not in moderate-to-severe disease, and is related to the degree of tissue eosinophilia and IL-4 expression. Whether these costimulatory molecules have a role as targets for asthma requires further investigation.


Respirology | 2015

Relationship between blood and bronchial submucosal eosinophilia and reticular basement membrane thickening in chronic obstructive pulmonary disease

Osama Eltboli; Vijay Mistry; Bethan Barker; Christopher E. Brightling

A sputum eosinophilia is observed in 10–40% of COPD subjects. The blood eosinophil count is a biomarker of sputum eosinophilia, but whether it is associated with bronchial submucosal eosinophils is unclear. In 20 COPD subjects and 21 controls we assessed the number of bronchial submucosal eosinophils and reticular basement membrane thickening and found these were positively correlated with the blood eosinophil percentage. In COPD, blood eosinophils are a good biomarker of bronchial eosinophilia and remodelling.

Collaboration


Dive into the Vijay Mistry's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Salman Siddiqui

University Hospitals of Leicester NHS Trust

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sarah Terry

University of Leicester

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge