Vijay P. Sarthy
Northwestern University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Vijay P. Sarthy.
Journal of Biological Chemistry | 2007
Dachun Yao; Tetsuya Taguchi; Takeshi Matsumura; Richard G. Pestell; Diane Edelstein; Ida Giardino; Guntram Suske; Naila Rabbani; Paul J. Thornalley; Vijay P. Sarthy; Hans-Peter Hammes; Michael Brownlee
Methylglyoxal is a highly reactive dicarbonyl degradation product formed from triose phosphates during glycolysis. Methylglyoxal forms stable adducts primarily with arginine residues of intracellular proteins. The biologic role of this covalent modification in regulating cell function is not known. Here we report that in mouse kidney endothelial cells, high glucose causes increased methylglyoxal modification of the corepressor mSin3A. Methylglyoxal modification of mSin3A results in increased recruitment of O-GlcNAc-transferase, with consequent increased modification of Sp3 by O-linked N-acetylglucosamine. This modification of Sp3 causes decreased binding to a glucose-responsive GC-box in the angiopoietin-2 (Ang-2) promoter, resulting in increased Ang-2 expression. Increased Ang-2 expression induced by high glucose increased expression of intracellular adhesion molecule 1 and vascular cell adhesion molecule 1 in cells and in kidneys from diabetic mice and sensitized microvascular endothelial cells to the proinflammatory effects of tumor necrosis factor α. This novel mechanism for regulating gene expression may play a role in the pathobiology of diabetic vascular disease.
Cell | 2006
Dachun Yao; Tetsuya Taguchi; Takeshi Matsumura; Richard G. Pestell; Diane Edelstein; Ida Giardino; Guntram Suske; Naila Ahmed; Paul J. Thornalley; Vijay P. Sarthy; Hans-Peter Hammes; Michael Brownlee
Methylglyoxal is a highly reactive dicarbonyl degradation product formed from triose phosphates during glycolysis. Methylglyoxal forms stable adducts primarily with arginine residues of intracellular proteins. The biologic role of this covalent modification in regulating cell function is not known. Here, we report that in retinal Müller cells, increased glycolytic flux causes increased methylglyoxal modification of the corepressor mSin3A. Methylglyoxal modification of mSin3A results in increased recruitment of O-GlcNAc transferase to an mSin3A-Sp3 complex, with consequent increased modification of Sp3 by O-linked N-acetylglucosamine. This modification of Sp3 causes decreased binding of the repressor complex to a glucose-responsive GC box in the angiopoietin-2 promoter, resulting in increased Ang-2 expression. A similar mechanism involving methylglyoxal-modification of other coregulator proteins may play a role in the pathobiology of a variety of conditions associated with changes in methylglyoxal concentration, including cancer and diabetic vascular disease.
Journal of Neurochemistry | 2002
Shyamala Vinnakota; Xiaojun Qian; Hussein Egal; Vijay P. Sarthy; Hemanta K. Sarkar
Abstract: Various ocular tissues have a higher concentration of taurine than plasma. This taurine concentration gradient across the cell membrane is maintained by a high‐affinity taurine transporter. To understand the physiological role of the taurine transporter in the retina, we cloned a taurine transporter encoding cDNA from a mouse retinal library, determined its biochemical and pharmacological properties, and identified the specific cellular sites expressing the taurine transporter mRNA. The deduced protein sequence of the mouse retinal taurine transporter (mTAUT) revealed >93% sequence identity to the canine kidney, rat brain, mouse brain, and human placental taurine transporters. Our data suggest that the mTAUT and the mouse brain taurine transporter may be variants of one another. The mTAUT synthetic RNA induced Na+‐ and Cl−‐dependent [3H]taurine transport activity in Xenopus laevis oocytes that saturated with an average Km of 13.2 µM for taurine. Unlike the previous studies, we determined the rate of taurine uptake as the external concentration of Cl− was varied, a single saturation process with an average apparent equilibrium constant (KCl−) of 17.7 mM. In contrast, the rate of taurine uptake showed a sigmoidal dependence when the external concentration of Na+ was varied (apparent equilibrium constant, KNa+∼54.8 mM). Analyses of the Na+‐ and Cl−‐concentration dependence data suggest that at least two Na+ and one Cl− are required to transport one taurine molecule via the taurine transporter. Varying the pH of the transport buffer also affected the rate of taurine uptake; the rate showed a minimum between pH 6.0 and 6.5 and a maximum between pH 7.5 and 8.0. The taurine transport was inhibited by various inhibitors tested with the following order of potency: hypotaurine > β‐alanine > l‐diaminopropionic acid > guanidinoethane sulfonate > β‐guanidinopropionic acid > chloroquine > γ‐aminobutyric acid > 3‐amino‐1‐propanesulfonic acid (homotaurine). Furthermore, the mTAUT activity was not inhibited by the inactive phorbol ester 4α‐phorbol 12,13‐didecanoate but was inhibited significantly by the active phorbol ester phorbol 12‐myristate 13‐acetate, which was both concentration and time dependent. The cellular sites expressing the taurine transporter mRNA in the mouse eye, as determined by in situ hybridization technique, showed low levels of expression in many of the ocular tissues, specifically the retina and the retinal pigment epithelium. Unexpectedly, the highest expression levels of taurine transporter mRNA were found instead in the ciliary body of the mouse eye.
Molecular Brain Research | 2001
M. Shamsul Ola; Pamela J. Moore; Amira El-Sherbeny; Penny Roon; Neeraj Agarwal; Vijay P. Sarthy; Pierre Casellas; Vadivel Ganapathy; Sylvia B. Smith
Sigma receptors are nonopiate and nonphencyclidine binding sites that are thought to be neuroprotective due to modulation of N-methyl-D-aspartate (NMDA) receptors. Sigma receptor 1 expression has been demonstrated in numerous tissues including brain. Recently, studies using binding assays have demonstrated sigma receptor 1 in neural retina, however these studies did not demonstrate in which retinal cell type(s) sigma receptor 1 was present nor did they establish unequivocally the molecular identity of the receptor. The present study was designed to address these issues. Reverse transcription-polymerase chain reaction (RT-PCR) analysis amplified sigma receptor 1 in neural retina, RPE-choroid complex, and lens isolated from mice. A similar RT-PCR product was amplified also in three cultured cell lines, rat Müller cells, rat ganglion cells and human ARPE-19 cells. In situ hybridization analysis revealed abundant sigma receptor 1 expression in ganglion cells, cells of the inner nuclear layer, inner segments of photoreceptor cells and retinal pigment epithelial (RPE) cells. Immunohistochemical studies detected the sigma receptor 1 protein in retinal ganglion, photoreceptor, RPE cells and surrounding the soma of cells in the inner nuclear layer. These data provide the first cellular localization of sigma receptor 1 in neural retina and establish the molecular identity of sigma receptor 1 in retinal cells. The demonstration that sigma receptor 1 is present in ganglion cells is particularly noteworthy given the well-documented susceptibility of these cells to glutamate toxicity. Our findings suggest that retinal ganglion cells may be amenable to the neuroprotective effects of sigma ligands under conditions of neurotoxicity such as occurs in diabetes.
Diabetes | 2011
Mohamed Al-Shabrawey; R. Mussell; Khalid Kahook; Amany Tawfik; Mohamed Eladl; Vijay P. Sarthy; Julian Nussbaum; Ahmed A. Elmarakby; SunYoung Park; Zafer Gurel; Nader Sheibani; Krishna Rao Maddipati
OBJECTIVE Arachidonic acid is metabolized by 12-lipoxygenase (12-LOX) to 12-hydroxyeicosatetraenoic acid (12-HETE) and has an important role in the regulation of angiogenesis and endothelial cell proliferation and migration. The goal of this study was to investigate whether 12-LOX plays a role in retinal neovascularization (NV). RESEARCH DESIGN AND METHODS Experiments were performed using retinas from a murine model of oxygen-induced ischemic retinopathy (OIR) that was treated with and without the LOX pathway inhibitor, baicalein, or lacking 12-LOX. We also analyzed vitreous samples from patients with and without proliferative diabetic retinopathy (PDR). Western blotting and RT-PCR were used to assess the expression of 12-LOX, vascular endothelial growth factor (VEGF), and pigment epithelium–derived factor (PEDF). Liquid chromatography–mass spectrometry was used to assess the amounts of HETEs in the murine retina and human vitreous samples. The effects of 12-HETE on VEGF and PEDF expression were evaluated in Müller cells (rMCs), primary mouse retinal pigment epithelial cells, and astrocytes. RESULTS Retinal NV during OIR was associated with increased 12-LOX expression and 12-, 15-, and 5-HETE production. The amounts of HETEs also were significantly higher in the vitreous of diabetic patients with PDR. Retinal NV was markedly abrogated in mice treated with baicalein or mice lacking 12-LOX. This was associated with decreased VEGF expression and restoration of PEDF levels. PEDF expression was reduced in 12-HETE–treated rMCs, astrocytes, and the retinal pigment epithelium. Only rMCs and astrocytes showed increased VEGF expression by 12-HETE. CONCLUSIONS 12-LOX and its product HETE are important regulators of retinal NV through modulation of VEGF and PEDF expression and could provide a new therapeutic target to prevent and treat ischemic retinopathy.
Investigative Ophthalmology & Visual Science | 2009
E. Chepchumba K. Yego; Jason A. Vincent; Vijay P. Sarthy; Julia V. Busik; Susanne Mohr
PURPOSE This study determined the role of the proinflammatory cytokines known to be elevated in the diabetic retina, namely IL-1beta, TNFalpha, and IL-6, in a high glucose-induced nuclear accumulation of GAPDH in retinal Müller cells, an event considered crucial for the induction of cell death. METHODS With use of the transformed rat Müller cell line (rMC-1) and isolated human Müller cells (HMCs), the authors examined the effect of high glucose (25 mM), IL-1beta, TNFalpha, IL-6, and high glucose (25 mM) plus inhibitors of the caspase-1/IL-1beta signaling pathway on GAPDH nuclear accumulation, which was evaluated by immunofluorescence analysis. RESULTS High glucose induced IL-1beta, weak IL-6, and no TNFalpha production by rMC-1 and HMCs. IL-1beta (1-10 ng/mL) significantly increased GAPDH nuclear accumulation in Müller cells in a concentration-dependent manner within 24 hours. Further, high glucose-induced GAPDH nuclear accumulation in Müller cells was mediated by IL-1beta. Inhibition of the IL-1 receptor using an IL-1 receptor antagonist (IL-1ra; 50 ng/mL) or inhibition of IL-1beta production using a specific caspase-1 inhibitor (YVAD-fmk; 100 microM) significantly decreased high glucose-induced GAPDH nuclear accumulation. In contrast, IL-6 (2 ng/mL) had a strong protective effect attenuating high glucose and IL-1beta-induced GAPDH nuclear accumulation in Müller cells. TNFalpha (1-10 ng/mL) did not have any effect on GAPDH nuclear accumulation. CONCLUSIONS These results revealed a novel mechanism for high glucose-induced GAPDH nuclear accumulation in Müller cells through production and autocrine stimulation by IL-1beta. The protective role of IL-6 in high glucose- and IL-1beta-induced toxicity indicates that changes in the balance of these cytokines might contribute to cellular damage mediated by elevated glucose levels.
Glia | 2005
Vijay P. Sarthy; Leonardo Pignataro; Thomas Pannicke; Michael Weick; Andreas Reichenbach; Takayuki Harada; Kohichi Tanaka; Robert E. Marc
Glutamate transporters are involved in maintaining extracellular glutamate at a low level to ensure a high signal‐to‐noise ratio for glutamatergic neurotransmission and to protect neurons from excitotoxic damage. The mammalian retina is known to express the excitatory amino acid transporters, EAAT1–5; however, their specific role in glutamate homeostasis is poorly understood. To examine the role of the glial glutamate/aspartate transporter (GLAST) in the retina, we have studied glutamate transport by Müller cells in GLAST−/− mice, using biochemical, electrophysiological, and immunocytochemical techniques. Glutamate uptake assays indicated that the Km value for glutamate uptake was similar in wild‐type and GLAST−/− mouse retinas, but the Vmax was ∼50% lower in the mutant. In Na+‐free medium, the Vmax was further reduced by 40%. In patch‐clamp recordings of dissociated Müller cells from GLAST−/− mice, application of 0.1 mM glutamate evoked no current showing that the cells lacked functional electrogenic glutamate transporters. The result also indicated that there was no compensatory upregulation of EAATs in Müller cells. [3H]D‐Aspartate uptake autoradiography, however, showed that Na+‐dependent, high‐affinity transporters account for most of the glutamate uptake by Müller cells, and that Na+‐independent glutamate transport is negligible. Additional experiments showed that the residual glutamate uptake in Müller cells in the GLAST−/− mouse retina is not due to known glutamate transporters—cystine‐glutamate exchanger, ASCT‐1, AGT‐1, or other heteroexchangers. The present study shows that while several known glutamate transporters are expressed by mammalian Müller cells, new Na+‐dependent, high‐affinity glutamate transporters remain to be identified.
Current Eye Research | 2002
Ying Wang; Sylvia B. Smith; Judy Mosinger Ogilvie; Doris J. McCool; Vijay P. Sarthy
Purpose. Intravitreal injection of ciliary neurotrophic factor (CNTF) is known to induce glial intermediate filament protein (GFAP) expression in retinal Müller cells. Because CNTF binding can activate multiple signaling kinases, we have examined the involvement of JAK/STAT pathway in GFAP induction in Müller cells. Methods. CNTF was injected intravitreally into mouse eyes. Immunocytochemistry and immunoblotting were used to study GFAP and STAT3-p (phosphorylated STAT3) levels either in mouse eyes, retinal explant cultures or in a Müller cell line, rMC-1. Results. In protein extracts of CNTF-injected eyes, retinal explants and the Müller cells, there was a substantial increase in STAT3-p level. Immunocytochemistry showed that STAT3-p was now present in many cell bodies in the INL and the GCL. To prove that CNTF acted via the JAK-STAT pathway, rMC-1 cells were transfected with a dominant-negative STAT3 mutant prior to treatment with CNTF. In the immunoblots of transfected cells, there was decrease in GFAP level. Conclusions. The results establish that CNTF can induce GFAP expression in retinal Müller cells through the JAK/STAT signaling pathway.
PLOS ONE | 2011
Wei Xue; Radu Cojocaru; V. Joseph Dudley; Matthew Brooks; Anand Swaroop; Vijay P. Sarthy
Background Ciliary neurotrophic factor (CNTF), a member of the interleukin-6 cytokine family, has been implicated in the development, differentiation and survival of retinal neurons. The mechanisms of CNTF action as well as its cellular targets in the retina are poorly understood. It has been postulated that some of the biological effects of CNTF are mediated through its action via retinal glial cells; however, molecular changes in retinal glia induced by CNTF have not been elucidated. We have, therefore, examined gene expression dynamics of purified Müller (glial) cells exposed to CNTF in vivo. Methodology/Principal Findings Müller cells were flow-sorted from mgfap-egfp transgenic mice one or three days after intravitreal injection of CNTF. Microarray analysis using RNA from purified Müller cells showed differential expression of almost 1,000 transcripts with two- to seventeen-fold change in response to CNTF. A comparison of transcriptional profiles from Müller cells at one or three days after CNTF treatment showed an increase in the number of transcribed genes as well as a change in the expression pattern. Ingenuity Pathway Analysis showed that the differentially regulated genes belong to distinct functional types such as cytokines, growth factors, G-protein coupled receptors, transporters and ion channels. Interestingly, many genes induced by CNTF were also highly expressed in reactive Müller cells from mice with inherited or experimentally induced retinal degeneration. Further analysis of gene profiles revealed 20–30% overlap in the transcription pattern among Müller cells, astrocytes and the RPE. Conclusions/Significance Our studies provide novel molecular insights into biological functions of Müller glial cells in mediating cytokine response. We suggest that CNTF remodels the gene expression profile of Müller cells leading to induction of networks associated with transcription, cell cycle regulation and inflammatory response. CNTF also appears to function as an inducer of gliosis in the retina.
Investigative Ophthalmology & Visual Science | 2014
Tetsuya Muto; Thomas Tien; Dongjoon Kim; Vijay P. Sarthy; Sayon Roy
PURPOSE To investigate whether high glucose (HG) alters connexin 43 (Cx43) expression and gap junction intercellular communication (GJIC) activity in retinal Müller cells, and promotes Müller cell and pericyte loss. METHODS Retinal Müller cells (rMC-1) and cocultures of rMC-1 and retinal pericytes were grown in normal (N) or HG (30 mM glucose) medium. Additionally, rMC-1 transfected with Cx43 small interfering RNA (siRNA) were grown as cocultures with pericytes, and rMC-1 transfected with Cx43 plasmid were grown in HG. Expression of Cx43 was determined by Western blotting and immunostaining and GJIC was assessed by scrape-loading dye transfer (SLDT) technique. Apoptosis was analyzed by TUNEL or differential staining assay, and Akt activation by assessing Akt phosphorylation. RESULTS In monocultures of rMC-1 and cocultures of rMC-1 and pericytes, Cx43 protein level, number of Cx43 plaques, GJIC, and Akt phosphorylation were significantly reduced in HG medium. Number of TUNEL-positive cells was also significantly increased in rMC-1 monocultures and in rMC-1 and pericyte cocultures grown in HG medium. Importantly, when rMC-1 transfected with Cx43 siRNA were grown as cocultures with pericytes, a significant decrease in GJIC, and increase in TUNEL-positive cells was observed, concomitant with decreased Akt phosphorylation. Upregulation of Cx43 rescued rMC-1 from HG-induced apoptosis. CONCLUSIONS Gap junction communication between Müller cells and pericytes is essential for their survival. Downregulation of Cx43 that is HG induced and impairment of GJIC activity in Müller cells contributes to loss of glial and vascular cells associated with the pathogenesis of diabetic retinopathy.