Vijay S. Thakur
Case Western Reserve University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Vijay S. Thakur.
Carcinogenesis | 2012
Vijay S. Thakur; Karishma Gupta; Sanjay Gupta
Green tea polyphenols (GTPs) reactivate epigenetically silenced genes in cancer cells and trigger cell cycle arrest and apoptosis; however, the mechanisms whereby these effects occur are not well understood. We investigated the molecular mechanisms underlying the antiproliferative effects of GTP, which may be similar to those of histone deacetylase (HDAC) inhibitors. Exposure of human prostate cancer LNCaP cells (harboring wild-type p53) and PC-3 cells (lacking p53) with 10-80 μg/ml of GTP for 24 h resulted in dose-dependent inhibition of class I HDAC enzyme activity and its protein expression. GTP treatment causes an accumulation of acetylated histone H3 in total cellular chromatin, resulting in increased accessibility to bind with the promoter sequences of p21/waf1 and Bax, consistent with the effects elicited by an HDAC inhibitor, trichostatin A. GTP treatment also resulted in increased expression of p21/waf1 and Bax at the protein and message levels in these cells. Furthermore, treatment of cells with proteasome inhibitor, MG132 together with GTP prevented degradation of class I HDACs, compared with cells treated with GTP alone, indicating increased proteasomal degradation of class I HDACs by GTP. These alterations were consistent with G(0)-G(1) phase cell cycle arrest and induction of apoptosis in both cell lines. Our findings provide new insight into the mechanisms of GTP action in human prostate cancer cells irrespective of their p53 status and suggest a novel approach to prevention and/or therapy of prostate cancer achieved via HDAC inhibition.
International Journal of Oncology | 2012
Vijay S. Thakur; Karishma Gupta; Sanjay Gupta
Acetylation of the tumor suppressor gene p53 at the carboxy-terminal lysine (Lys) residues enhances its transcriptional activity associated with cell cycle arrest and apoptosis. Histone deacetylases (HDACs), a family of evolutionarily conserved enzymes, counterbalance the acetylation of lysine residues on histone and non-histone proteins. In this study, we demonstrate that green tea polyphenols (GTPs) and their major constituent, (-) epigallocatechin-3-gallate (EGCG), activate p53 through acetylation at the Lys373 and Lys382 residues by inhibiting class I HDACs in LNCaP human prostate cancer cells. Treatment of cells with GTPs (2.5-10 µg/ml) and EGCG (5-20 µM) resulted in dose- and time-dependent inhibition of class I HDACs (HDAC1, 2, 3 and 8), albeit at varying levels. Discontinuation of treatment with GTP/EGCG resulted in the loss of p53 acetylation at both the sites in these cells. GTP/EGCG treatment also resulted in increased expression of p21/waf1 and Bax at the protein and message levels in these cells. The increased GTP/EGCG-mediated p53 acetylation enhanced its binding on the promoters of p21/waf1 and Bax, which was associated with increased accumulation of cells in the G0/G1 phase of the cell cycle and induction of apoptosis. Our findings indicate that GTP/EGCG causes acetylation of p53 by inhibiting class I HDACs, a function that is likely to be part of the mechanisms that control the physiological activity of p53.
Aaps Journal | 2014
Vijay S. Thakur; Gauri Deb; Melissa A. Babcook; Sanjay Gupta
In recent years, “nutri-epigenetics,” which focuses on the influence of dietary agents on epigenetic mechanism(s), has emerged as an exciting novel area in epigenetics research. Targeting of aberrant epigenetic modifications has gained considerable attention in cancer chemoprevention research because, unlike genetic changes, epigenetic alterations are reversible and occur during early carcinogenesis. Aberrant epigenetic mechanisms, such as promoter DNA methylation, histone modifications, and miRNA-mediated post-transcriptional alterations, can silence critical tumor suppressor genes, such as transcription factors, cell cycle regulators, nuclear receptors, signal transducers, and apoptosis-inducing and DNA repair gene products, and ultimately contribute to carcinogenesis. In an effort to identify and develop anticancer agents which cause minimal harm to normal cells while effectively killing cancer cells, a number of naturally occurring phytochemicals in food and medicinal plants have been investigated. This review highlights the potential role of plant-derived phytochemicals in targeting epigenetic alterations that occur during carcinogenesis, by modulating the activity or expression of DNA methyltransferases, histone modifying enzymes, and miRNAs. We present in detail the epigenetic mode of action of various phytochemicals and discuss their potential as safe and clinically useful chemopreventive strategies.
Current Pharmaceutical Biotechnology | 2012
Vijay S. Thakur; Karishma Gupta; Sanjay Gupta
Tea is the second most consumed beverage in the world reported to have multiple health benefits. Preventive and therapeutic benefits of tea polyphenols include enhanced general well being and anti-neoplastic effects. The pharmacologic action of tea is often attributed to various catechins present therein. Experiments conducted in cancer cell lines and animal models demonstrate that tea polyphenols protect against cellular damage caused by oxidative stress and altered immunity. Tea polyphenols modify various metabolic and signaling pathways in the regulation of proliferation, apoptosis, angiogenesis, and metastasis and therefore restrict clonal expansion of cancer cells. Tea polyphenols have been shown to reactivate tumor suppressors, block the unlimited replicative potential of cancer cells, and physically bind to nucleic acids involved in epigenetic alterations of gene regulation. Remarkable interest in green tea as a potential chemopreventive agent has been generated since recent epigenetic data showed that tea polyphenols have the potential to reverse epigenetic modifications which might otherwise be carcinogenic. Like green tea, black tea may also possess chemopreventive and chemotherapeutic potential; however, there is still not enough evidence available to make any conclusive statements. Here we present a brief description of tea polyphenols and discuss the findings of various in vitro and in vivo studies of the anticancer effects of tea polyphenols. Detailed discussion of various studies related to epigenetic changes caused by tea polyphenols leading to prevention of oncogenesis or cancer progression is included. Finally, we discuss on the scope and development of tea polyphenols in cancer prevention and therapy.
Proceedings of the National Academy of Sciences of the United States of America | 2007
A. R. M. R. Amin; Vijay S. Thakur; Rajib Paul; Gen-Sheng Feng; Cheng Kui Qu; Hasan Mukhtar; Munna L. Agarwal
Green tea polyphenol, epigallocatechin-3-gallate (EGCG) differentially regulates the cellular growth of cancer cells in a p53-dependent manner through apoptosis and/or cell cycle arrest. In an effort to further elucidate the mechanism of differential growth regulation by EGCG, we have investigated the role of the tyrosine phosphatase, SHP-2. Comparing the responses of mouse embryonic fibroblasts (MEFs), expressing either WT or functionally inactive/truncated SHP-2, we find that inactivation of SHP-2 remarkably sensitizes cells to EGCG-mediated killing. MEFs lacking functional SHP-2 undergo massive apoptosis upon treatment with EGCG. By comparing gene expression profiles, we have identified a set of transcriptional targets of p53 that are differentially modulated in cells undergoing apoptosis. Western blot and real-time PCR analyses of a select group of genes further confirm that the expression is SHP-2-dependent. Similar observations were made in MEFs lacking p53, confirming that the expression of these “p53 target genes” is p53-independent. In addition, EGCG treatment induced the expression of p73 mRNA and protein in both cell types, but not p63. Inactivation of p73 in cells expressing nonfunctional SHP-2 markedly inhibited apoptosis and p53 target gene expression. Although phosphorylation of JNK is differentially regulated by SHP2, it was found to be dispensable for EGCG-induced apoptosis and p53 target gene expression. Our results have identified SHP-2 as a negative regulator of EGCG-induced-apoptosis and have identified a subset of p53 target genes whose expression is paradoxically not mediated by p53 but by one of its family members, p73.
Epigenetics | 2013
Gauri Deb; Vijay S. Thakur; Sanjay Gupta
Overexpression of EZH2 and other PRC2 subunits, such as SUZ12, is associated with tumor progression and poor prognosis in several human malignancies. Nevertheless, the underlying mechanisms driving aberrant EZH2 expression are poorly understood. This review provides molecular insights into the essential role of EZH2 in breast and prostate tumorigenesis. We addressed the current understanding on the oncogenic role of EZH2, with an emphasis on: (1) the less known PRC2-independent role of EZH2 in gene activation, in addition to its canonical role in transcriptional silencing as a histone methyltransferase catalyzing the trimethylation of histone H3 at lysine 27; (2) causes and consequences of its deregulation in tumor cells and; (3) collaboration of EZH2 with other epigenetic and hormone receptor-mediated oncogenic signaling pathways. We also summarize how EZH2 has emerged as a promising therapeutic target in hormone-refractory cancers and the prospects for integrating EZH2 blockade with available pharmacological inhibitors.
Molecular Carcinogenesis | 2015
Gauri Deb; Vijay S. Thakur; Anil M. Limaye; Sanjay Gupta
Aberrant epigenetic silencing of the tissue inhibitor of matrix metalloproteinase‐3 (TIMP‐3) gene that negatively regulates matrix metalloproteinases (MMPs) activity has been implicated in the pathogenesis and metastasis of breast cancer. In the present study, we demonstrate that green tea polyphenols (GTP) and its major constituent, epigallocatechin‐3‐gallate (EGCG) mediate epigenetic induction of TIMP‐3 levels and play a key role in suppressing invasiveness and gelatinolytic activity of MMP‐2 and MMP‐9 in breast cancer cells. Treatment of MCF‐7 and MDA‐MB‐231 breast cancer cells with 20 µM EGCG and 10 µg/mL GTP for 72 h significantly induces TIMP‐3 mRNA and protein levels. Interestingly, investigations into the molecular mechanism revealed that TIMP‐3 repression in breast cancer cells is mediated by epigenetic silencing mechanism(s) involving increased activity of the enhancer of zeste homolog 2 (EZH2) and class I histone deacetylases (HDACs), independent of promoter DNA hypermethylation. Treatment of breast cancer cells with GTP and EGCG significantly reduced EZH2 and class I HDAC protein levels. Furthermore, transcriptional activation of TIMP‐3 was found to be associated with decreased EZH2 localization and H3K27 trimethylation enrichment at the TIMP‐3 promoter with a concomitant increase in histone H3K9/18 acetylation. Our findings highlight TIMP‐3 induction as a key epigenetic event modulated by GTPs in restoring the MMP:TIMP balance to delay breast cancer progression and invasion.
Cancer Letters | 2010
Vijay S. Thakur; A.R.M. Ruhul Amin; Rajib Paul; Kalpana Gupta; Kedar Hastak; Mukesh K. Agarwal; Mark W. Jackson; David Wald; Hasan Mukhtar; Munna L. Agarwal
The tumor suppressor protein p53 plays a key role in regulation of negative cellular growth in response to EGCG. To further explore the role of p53 signaling and elucidate the molecular mechanism, we employed colon cancer HCT116 cell line and its derivatives in which a specific transcriptional target of p53 is knocked down by homologous recombination. Cells expressing p53 and p21 accumulate in G1 upon treatment with EGCG. In contrast, same cells lacking p21 traverse through the cell cycle and eventually undergo apoptosis as revealed by TUNEL staining. Treatment with EGCG leads to induction of p53, p21 and PUMA in p21 wild-type, and p53 and PUMA in p21(-/-) cells. Ablation of p53 by RNAi protects p21(-/-) cells, thus indicating a p53-dependent apoptosis by EGCG. Furthermore, analysis of cells lacking PUMA or Bax with or without p21 but with p53 reveals that all the cells expressing p53 and p21 survived after EGCG treatment. More interestingly, cells lacking both PUMA and p21 survived ECGC treatment whereas those lacking p21 and Bax did not. Taken together, our results present a novel concept wherein p21-dependent growth arrest pre-empts and protects cells from otherwise, in its absence, apoptosis which is mediated by activation of pro-apoptotic protein PUMA. Furthermore, we find that p53-dependent activation of PUMA in response to EGCG directly leads to apoptosis with out requiring Bax as is the case in response to agents that induce DNA damage. p21, thus can be used as a molecular switch for therapeutic intervention of colon cancer.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Kedar Hastak; Rajib Paul; Mukesh K. Agarwal; Vijay S. Thakur; A.R.M. Ruhul Amin; Sudesh Agrawal; R. Michael Sramkoski; James W. Jacobberger; Mark W. Jackson; George R. Stark; Munna L. Agarwal
p53-dependent G1 and G2 cell cycle checkpoints are activated in response DNA damage that help to maintain genomic stability. p53 also helps to protect cells from damage that occurs during S phase, for example, when the cells are starved for DNA precursors or irradiated with a low dose of UV. p53 is activated in normal cells starved for pyrimidine nucleotides by treatment with N-(phosphonacetyl)-l-aspartate (PALA). The treated cells progress through a first S phase with kinetics similar to those of untreated cells. However, the DNA of the treated cells begins to become damaged rapidly, within 12 h, as revealed by a comet assay, which detects broken DNA, and by staining for phosphorylated histone H2AX, which accumulates at sites of DNA damage. Because the cells survive, the damage must be reversible, suggesting single-strand breaks or gaps as the most likely possibility. The transiently damaged DNA stimulates activation of ATR and CHK1, which in turn catalyze the phosphorylation and accumulation of p53. Although PALA-induced DNA damage occurs only in dividing cells, the p53 that is activated is only competent to transcribe genes such as p21 and macrophage inhibitory cytokine 1 (whose products regulate G2 and G1 or S phase checkpoints, respectively) after the cells have exited the S phase during which damage occurs. We propose that p53 is activated by stimulation of mismatch repair in response to the misincorporation of deoxynucleotides into newly synthesized DNA, long before the lack of pyrimidine nucleoside triphosphates causes the rate of DNA synthesis to slow appreciably.
PLOS ONE | 2012
Karishma Gupta; Vijay S. Thakur; Natarajan Bhaskaran; Akbar Nawab; Melissa A. Babcook; Mark W. Jackson; Sanjay Gupta
Inactivation of the tumor suppressor gene p53 is commonly observed in human prostate cancer and is associated with therapeutic resistance. We have previously demonstrated that green tea polyphenols (GTP) induce apoptosis in prostate cancer cells irrespective of p53 status. However, the molecular mechanisms underlying these observations remain elusive. Here we investigated the mechanisms of GTP-induced apoptosis in human prostate cancer LNCaP cells stably-transfected with short hairpin-RNA against p53 (LNCaPshp53) and control vector (LNCaPshV). GTP treatment induced p53 stabilization and activation of downstream targets p21/waf1 and Bax in a dose-dependent manner specifically in LNCaPshV cells. However, GTP-induced FAS upregulation through activation of c-jun-N-terminal kinase resulted in FADD phosphorylation, caspase-8 activation and truncation of BID, leading to apoptosis in both LNCaPshV and LNCaPshp53 cells. In parallel, treatment of cells with GTP resulted in inhibition of survival pathway, mediated by Akt deactivation and loss of BAD phosphorylation more prominently in LNCaPshp53 cells. These distinct routes of cell death converged to a common pathway, leading to loss of mitochondrial transmembrane potential, cytochrome c release and activation of terminal caspases, resulting in PARP-cleavage. GTP-induced apoptosis was attenuated with JNK inhibitor, SP600125 in both cell lines; whereas PI3K-Akt inhibitor, LY294002 resulted in increased cell death prominently in LNCaPshp53 cells, establishing the role of two distinct pathways of GTP-mediated apoptosis. Furthermore, GTP exposure resulted in inhibition of class I HDAC protein, accumulation of acetylated histone-H3 in total cellular chromatin, resulting in increased accessibility of transcription factors to bind with the promoter sequences of p21/waf1 and Bax, regardless of the p53 status of cells, consistent with effects elicited by an HDAC inhibitor, trichostatin A. These results demonstrate that GTP induces prostate cancer cell death by two distinct mechanisms regardless of p53 status, thus identifying specific well-defined molecular mechanisms that may be targeted by chemopreventive and/or therapeutic strategies.