Vijay Walia
National Institutes of Health
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Vijay Walia.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Mohit Sachdeva; Shoumin Zhu; Fangting Wu; Hailong Wu; Vijay Walia; Sumit Kumar; Randolph C. Elble; Kounosuke Watabe; Yin-Yuan Mo
The tumor suppressor p53 negatively regulates a number of genes, including the proto-oncogene c-Myc, in addition to activating many other genes. One mechanism of the p53-mediated c-Myc repression may involve transcriptional regulation. However, it is not clear whether microRNAs (miRNAs) play a role in the p53-mediated posttranscriptional regulation of c-Myc. In this study, we show that a putative tumor suppressor, miR-145, is expressed through the phosphoinositide-3 kinase (PI-3K)/Akt and p53 pathways. Importantly, p53 transcriptionally induces the expression of miR-145 by interacting with a potential p53 response element (p53RE) in the miR-145 promoter. We further show that c-Myc is a direct target for miR-145. Although miR-145 silences the expression of c-Myc, anti-miR-145 enhances its expression. This specific silencing of c-Myc by miR-145 accounts at least in part for the miR-145-mediated inhibition of tumor cell growth both in vitro and in vivo. Finally, the blockade of miR-145 by anti-miR-145 is able to reverse the p53-mediated c-Myc repression. Together, these results define the role of miR-145 in the posttranscriptional regulation of c-Myc by p53 and suggest that, as a new member of the p53 regulatory network, miR-145 provides a direct link between p53 and c-Myc in this gene regulatory network.
Nature Genetics | 2011
Xiaomu Wei; Vijay Walia; Jimmy Lin; Jamie K. Teer; Todd D. Prickett; Jared J. Gartner; Sean Davis; Katherine Stemke-Hale; Michael A. Davies; Jeffrey E. Gershenwald; William H. Robinson; Steven E. Robinson; Steven A. Rosenberg; Yardena Samuels
The incidence of melanoma is increasing more than any other cancer, and knowledge of its genetic alterations is limited. To systematically analyze such alterations, we performed whole-exome sequencing of 14 matched normal and metastatic tumor DNAs. Using stringent criteria, we identified 68 genes that appeared to be somatically mutated at elevated frequency, many of which are not known to be genetically altered in tumors. Most importantly, we discovered that TRRAP harbored a recurrent mutation that clustered in one position (p. Ser722Phe) in 6 out of 167 affected individuals (∼4%), as well as a previously unidentified gene, GRIN2A, which was mutated in 33% of melanoma samples. The nature, pattern and functional evaluation of the TRRAP recurrent mutation suggest that TRRAP functions as an oncogene. Our study provides, to our knowledge, the most comprehensive map of genetic alterations in melanoma to date and suggests that the glutamate signaling pathway is involved in this disease.
Nature Genetics | 2011
Todd D. Prickett; Xiaomu Wei; Isabel Cardenas-Navia; Jamie K. Teer; Jimmy Lin; Vijay Walia; Jared J. Gartner; Jiji Jiang; Praveen F. Cherukuri; Alfredo A. Molinolo; Michael A. Davies; Jeffrey E. Gershenwald; Katherine Stemke-Hale; Steven A. Rosenberg; Elliott H. Margulies; Yardena Samuels
G protein-coupled receptors (GPCRs), the largest human gene family, are important regulators of signaling pathways. However, knowledge of their genetic alterations is limited. In this study, we used exon capture and massively parallel sequencing methods to analyze the mutational status of 734 GPCRs in melanoma. This investigation revealed that one family member, GRM3, was frequently mutated and that one of its mutations clustered within one position. Biochemical analysis of GRM3 alterations revealed that mutant GRM3 selectively regulated the phosphorylation of MEK, leading to increased anchorage-independent growth and migration. Melanoma cells expressing mutant GRM3 had reduced cell growth and cellular migration after short hairpin RNA–mediated knockdown of GRM3 or treatment with a selective MEK inhibitor, AZD-6244, which is currently being used in phase 2 clinical trials. Our study yields the most comprehensive map of genetic alterations in the GPCR gene family.
Nature Cell Biology | 2015
Quanlong Lu; Christine Insinna; Carolyn Ott; Jimmy K. Stauffer; Petra Pintado; Juliati Rahajeng; Ulrich Baxa; Vijay Walia; Adrian Cuenca; Yoo Seok Hwang; Ira O. Daar; Susana S. Lopes; Jennifer Lippincott-Schwartz; Peter K. Jackson; Steve Caplan; Christopher J. Westlake
Membrane association with mother centriole (M-centriole) distal appendages is critical for ciliogenesis initiation. How the Rab GTPase Rab11–Rab8 cascade functions in early ciliary membrane assembly is unknown. Here, we show that the membrane shaping proteins EHD1 and EHD3, in association with the Rab11–Rab8 cascade, function in early ciliogenesis. EHD1 and EHD3 localize to preciliary membranes and the ciliary pocket. EHD-dependent membrane tubulation is essential for ciliary vesicle formation from smaller distal appendage vesicles (DAVs). Importantly, this step functions in M-centriole to basal body transformation and recruitment of transition zone proteins and IFT20. SNAP29, a SNARE membrane fusion regulator and EHD1-binding protein, is also required for DAV-mediated ciliary vesicle assembly. Interestingly, only after ciliary vesicle assembly is Rab8 activated for ciliary growth. Our studies uncover molecular mechanisms informing a previously uncharacterized ciliogenesis step, whereby EHD1 and EHD3 reorganize the M-centriole and associated DAVs before coordinated ciliary membrane and axoneme growth.
Oncogene | 2012
Vijay Walia; Yang Yu; Deshou Cao; Miao Sun; Janel R. McLean; Brett G. Hollier; Ji-Ming Cheng; Sendurai A. Mani; Krishna Rao; Louis S. Premkumar; Randolph C. Elble
Transition between epithelial and mesenchymal states is a feature of both normal development and tumor progression. We report that expression of chloride channel accessory protein hCLCA2 is a characteristic of epithelial differentiation in the immortalized MCF10A and HMLE models, while induction of epithelial-to-mesenchymal transition by cell dilution, TGFβ or mesenchymal transcription factors sharply reduces hCLCA2 levels. Attenuation of hCLCA2 expression by lentiviral small hairpin RNA caused cell overgrowth and focus formation, enhanced migration and invasion, and increased mammosphere formation in methylcellulose. These changes were accompanied by downregulation of E-cadherin and upregulation of mesenchymal markers such as vimentin and fibronectin. Moreover, hCLCA2 expression is greatly downregulated in breast cancer cells with a mesenchymal or claudin-low profile. These observations suggest that loss of hCLCA2 may promote metastasis. We find that higher-than-median expression of hCLCA2 is associated with a one-third lower rate of metastasis over an 18-year period among breast cancer patients compared with lower-than-median (n=344, unfiltered for subtype). Thus, hCLCA2 is required for epithelial differentiation, and its loss during tumor progression contributes to metastasis. Overexpression of hCLCA2 has been reported to inhibit cell proliferation and is accompanied by increases in chloride current at the plasma membrane and reduced intracellular pH (pHi). We found that knockdown cells have sharply reduced chloride current and higher pHi, both characteristics of tumor cells. These results suggest a mechanism for the effects on differentiation. Loss of hCLCA2 may allow escape from pHi homeostatic mechanisms, permitting the higher intracellular and lower extracellular pH that are characteristic of aggressive tumor cells.
Pigment Cell & Melanoma Research | 2012
Vijay Walia; Euphemia W. Mu; Jimmy C. Lin; Yardena Samuels
Melanoma, the most aggressive form of skin cancer, has increased in incidence more rapidly than any other cancer. The completion of the human genome project and advancements in genomics technologies has allowed us to investigate genetic alterations of melanoma at a scale and depth that is unprecedented. Here, we survey the history of the different approaches taken to understand the genomics of melanoma – from early candidate genes, to gene families, to genome‐wide studies. The new era of whole‐exome and whole‐genome sequencing has paved the way for an in‐depth understanding of melanoma biology, identification of new therapeutic targets, and development of novel personalized therapies for melanoma.
Cancer Research | 2009
Vijay Walia; Ming Ding; Sumit Kumar; Daotai Nie; Louis S. Premkumar; Randolph C. Elble
hCLCA2 is frequently down-regulated in breast cancer and is a candidate tumor suppressor gene. We show here that the hCLCA2 gene is strongly induced by p53 in response to DNA damage. Adenoviral expression of p53 induces hCLCA2 in a variety of breast cell lines. Further, we find that p53 binds to consensus elements in the hCLCA2 promoter and mutation of these sites abolishes p53-responsiveness and induction by DNA damage. Adenoviral transduction of hCLCA2 into immortalized cells induces p53, CDK inhibitors p21 and p27, and cell cycle arrest by 24 hours, and caspase induction and apoptosis by 40 hours postinfection. Transduction of the malignant tumor cell line BT549 on the other hand does not induce p53, p21, or p27 but instead induces apoptosis directly and more rapidly. Knockout and knockdown studies indicate that growth inhibition and apoptosis are signaled via multiple pathways. Conversely, suppression of hCLCA2 by RNA interference enhances proliferation of MCF10A and reduces sensitivity to doxorubicin. Gene expression profiles indicate that hCLCA2 levels are strongly predictive of tumor cell sensitivity to doxorubicin and other chemotherapeutics. Because certain Cl(-) channels are proposed to promote apoptosis by reducing intracellular pH, we tested whether, and established that, hCLCA2 enhances Cl(-) current in breast cancer cells and reduces pH to approximately 6.7. These results reveal hCLCA2 as a novel p53-inducible growth inhibitor, explain how its down-regulation confers a survival advantage to tumor cells, and suggest both prognostic and therapeutic applications.
Journal of Biological Chemistry | 2006
Randolph C. Elble; Vijay Walia; Hung Chi Cheng; Che J. Connon; Lars Mundhenk; Achim D. Gruber; Bendicht U. Pauli
Calcium-activated chloride channel (CLCA) proteins were first described as a family of plasma membrane Cl– channels that could be activated by calcium. Genetic and electrophysiological studies have supported this view. The human CLCA2 protein is expressed as a 943-amino-acid precursor whose N-terminal signal sequence is removed followed by internal cleavage near amino acid position 680. Earlier investigations of transmembrane geometry suggested five membrane passes. However, analysis by the more recently derived simple modular architecture research tool algorithm predicts that a C-terminal 22-amino-acid hydrophobic segment comprises the only transmembrane pass. To resolve this question, we raised an antibody against hCLCA2 and investigated the synthesis, localization, maturation, and topology of the protein. Cell surface biotinylation and endoglycosidase H analysis revealed a 128-kDa precursor confined to the endoplasmic reticulum and a maturely glycosylated 141-kDa precursor at the cell surface by 48 h post-transfection. By 72 h, 109-kDa N-terminal and 35-kDa C-terminal cleavage products were detected at the cell surface but not in the endoplasmic reticulum. Surprisingly, however, the 109-kDa product was spontaneously shed into the medium or removed by acid washes, whereas the precursor and 35-kDa product were retained by the membrane. Two other CLCA family members, bCLCA2 and hCLCA1, also demonstrated preferential release of the N-terminal product. Transfer of the hCLCA2 C-terminal hydrophobic segment to a secreted form of green fluorescent protein was sufficient to target that protein to the plasma membrane. Together, these data indicate that hCLCA2 is mostly extracellular with only a single transmembrane segment followed by a short cytoplasmic tail and is itself unlikely to form a channel.
Stem Cells and Development | 2010
Vijay Walia; Randolph C. Elble
Cancer stem cells are commonly isolated by cell sorting for surface antigens that typify stem cells. This technique is very expensive, requiring advanced, high-speed sorters and high-quality antibodies, and yields are often low. Some stem cells can be isolated based on ability to exclude dyes, conferred by expression of membrane transporters, but this property is not universal. Mammary stem cells are known to down-regulate cell-cell junctions and exhibit mesenchymal behaviors in vitro. We predicted that such cells should be readily detachable from tissue-culture plastic and that this might serve as a basis for their isolation from differentiated cells. We found that immortalized or transformed mammary epithelial cells can indeed be resolved into trypsin-sensitive and trypsin-resistant populations. The former are mesenchymal in morphology and expression profile and are enriched in stem cell properties such as mammosphere-forming ability, drug resistance, and CD44 stem cell antigen relative to the trypsin-resistant population. The latter, in contrast, are cobblestone in morphology, epithelial in expression profile, and deficient in mammosphere formation. After several rounds of differential trypsinization, the trypsin-sensitive pool had 80-fold higher mammosphere-forming ability than the trypsin-resistant population and 20-fold higher than the starting population. This resolution compares favorably with other enrichment methods. Thus, for relatively differentiated epithelial cell types, differential adhesion may serve as an enrichment strategy to increase the stem cell pool for subsequent manipulations.
PLOS ONE | 2013
Yang Yu; Vijay Walia; Randolph C. Elble
The epithelial to mesenchymal transition (EMT) is a developmental program in which epithelial cells downregulate their cell-cell junctions, acquire spindle cell morphology and exhibit cellular motility. In breast cancer, EMT facilitates invasion of surrounding tissues and correlates closely with cancer metastasis and relapse. We found previously that the candidate tumor suppressor CLCA2 is expressed in differentiated, growth-arrested mammary epithelial cells but is downregulated during tumor progression and EMT. We further demonstrated that CLCA2 is a p53-inducible proliferation-inhibitor whose loss indicates an increased risk of metastasis. We show here that another member of the CLCA gene family, CLCA4, is expressed in mammary epithelial cells and is similarly downregulated in breast tumors and in breast cancer cell lines. Like CLCA2, the gene is stress-inducible, and ectopic expression inhibits colony formation. Transcriptional profiling studies revealed that CLCA4 and CLCA2 together are markers for mammary epithelial differentiation, and both are downregulated by TGF beta. Moreover, knockdown of CLCA4 in immortalized cells by shRNAs caused downregulation of epithelial marker E-cadherin and CLCA2, while mesenchymal markers N-cadherin, vimentin, and fibronectin were upregulated. Double knockdown of CLCA2 and CLCA4 enhanced the mesenchymal profile. These findings suggest that CLCA4 and CLCA2 play complementary but distinct roles in epithelial differentiation. Clinically, low expression of CLCA4 signaled lower relapse-free survival in basal and luminal B breast cancers.