Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vijayalakshmi Easwar is active.

Publication


Featured researches published by Vijayalakshmi Easwar.


International Journal of Otolaryngology | 2012

A Pilot Study on Cortical Auditory Evoked Potentials in Children: Aided CAEPs Reflect Improved High-Frequency Audibility with Frequency Compression Hearing Aid Technology

Danielle Glista; Vijayalakshmi Easwar; David W. Purcell; Susan Scollie

Background. This study investigated whether cortical auditory evoked potentials (CAEPs) could reliably be recorded and interpreted using clinical testing equipment, to assess the effects of hearing aid technology on the CAEP. Methods. Fifteen normal hearing (NH) and five hearing impaired (HI) children were included in the study. NH children were tested unaided; HI children were tested while wearing hearing aids. CAEPs were evoked with tone bursts presented at a suprathreshold level. Presence/absence of CAEPs was established based on agreement between two independent raters. Results. Present waveforms were interpreted for most NH listeners and all HI listeners, when stimuli were measured to be at an audible level. The younger NH children were found to have significantly different waveform morphology, compared to the older children, with grand averaged waveforms differing in the later part of the time window (the N2 response). Results suggest that in some children, frequency compression hearing aid processing improved audibility of specific frequencies, leading to increased rates of detectable cortical responses in HI children. Conclusions. These findings provide support for the use of CAEPs in measuring hearing aid benefit. Further research is needed to validate aided results across a larger group of HI participants and with speech-based stimuli.


Brain and behavior | 2017

Simultaneous bilateral cochlear implants: Developmental advances do not yet achieve normal cortical processing

Vijayalakshmi Easwar; Michael Deighton; Blake C. Papsin; Karen A. Gordon

Simultaneous bilateral cochlear implantation promotes symmetric development of bilateral auditory pathways but binaural hearing remains abnormal. To evaluate whether bilateral cortical processing remains impaired in such children, cortical activity to unilateral and bilateral stimuli was assessed in a unique cohort of 16 children who received bilateral cochlear implants (CIs) simultaneously at 1.97 ± 0.86 years of age and had ~4 years of CI experience, providing the first opportunity to assess electrically driven cortical development in the absence of reorganized asymmetries from sequential implantation.


International Journal of Audiology | 2012

The effect of stimulus choice on cortical auditory evoked potentials (CAEP): Consideration of speech segment positioning within naturally produced speech

Vijayalakshmi Easwar; Danielle Glista; David W. Purcell; Susan Scollie

Abstract Objective: Cortical auditory evoked potentials (CAEPs) can be elicited to stimuli generated from different parts of speech. The aim of this study was to compare the phoneme /ʃ/ from word medial and word initial positions and its influence on the CAEP. Design: Stimuli from word medial positions were found to have shorter rise times compared to the same phonemes from word initial positions. A repeated measures design was carried out with CAEPs elicited using /ʃ/ from a word initial and a word medial position. Study sample: Sixteen individuals with audiometric thresholds within normal limits participated in the study. Results: Stimuli /ʃ/ from a word medial position elicited CAEPs with significantly larger amplitudes and shorter latencies compared to /ʃ/ from a word initial position (p < 0.05). Conclusions: Findings from this study, incorporating naturally produced speech sounds, suggest the need to consider spectral and temporal variations when choosing stimuli to optimize the amplitude and latency characteristics of the CAEP. Overall, findings illustrate good test-retest reliability of CAEP measures using speech stimuli with clinical equipment.


The Journal of Neuroscience | 2017

Cortical Representation of Interaural Time Difference Is Impaired by Deafness in Development: Evidence from Children with Early Long-term Access to Sound through Bilateral Cochlear Implants Provided Simultaneously

Vijayalakshmi Easwar; Michael Deighton; Blake C. Papsin; Karen A. Gordon

Accurate use of interaural time differences (ITDs) for spatial hearing may require access to bilateral auditory input during sensitive periods in human development. Providing bilateral cochlear implants (CIs) simultaneously promotes symmetrical development of bilateral auditory pathways but does not support normal ITD sensitivity. Thus, although binaural interactions are established by bilateral CIs in the auditory brainstem, potential deficits in cortical processing of ITDs remain. Cortical ITD processing in children with simultaneous bilateral CIs and normal hearing with similar time-in-sound was explored in the present study. Cortical activity evoked by bilateral stimuli with varying ITDs (0, ±0.4, ±1 ms) was recorded using multichannel electroencephalography. Source analyses indicated dominant activity in the right auditory cortex in both groups but limited ITD processing in children with bilateral CIs. In normal-hearing children, adult-like processing patterns were found underlying the immature P1 (∼100 ms) response peak with reduced activity in the auditory cortex ipsilateral to the leading ITD. Further, the left cortex showed a stronger preference than the right cortex for stimuli leading from the contralateral hemifield. By contrast, children with CIs demonstrated reduced ITD-related changes in both auditory cortices. Decreased parieto-occipital activity, possibly involved in spatial processing, was also revealed in children with CIs. Thus, simultaneous bilateral implantation in young children maintains right cortical dominance during binaural processing but does not fully overcome effects of deafness using present CI devices. Protection of bilateral pathways through simultaneous implantation might be capitalized for ITD processing with signal processing advances, which more consistently represent binaural timing cues. SIGNIFICANCE STATEMENT Multichannel electroencephalography demonstrated impairment of binaural processing in children who are deaf despite early access to bilateral auditory input by first finding that foundations for binaural hearing are normally established during early stages of cortical development. Although 4- to 7-year-old children with normal hearing had immature cortical responses, adult patterns in cortical coding of binaural timing cues were measured. Second, children receiving two cochlear implants in the same surgery maintained normal-like input from both ears, but this did not support significant effects of binaural timing cues in either auditory cortex. Deficits in parieto-occiptal areas further suggested impairment in spatial processing. Results indicate that cochlear implants working independently in each ear do not fully overcome deafness-related binaural processing deficits, even after long-term experience.


Ear and Hearing | 2015

Evaluation of Speech-Evoked Envelope Following Responses as an Objective Aided Outcome Measure: Effect of Stimulus Level, Bandwidth, and Amplification in Adults With Hearing Loss.

Vijayalakshmi Easwar; David W. Purcell; Steven J. Aiken; Vijay Parsa; Susan Scollie

Objectives: The present study evaluated a novel test paradigm based on speech-evoked envelope following responses (EFRs) as an objective aided outcome measure for individuals fitted with hearing aids. Although intended for use in infants with hearing loss, this study evaluated the paradigm in adults with hearing loss, as a precursor to further evaluation in infants. The test stimulus was a naturally male-spoken token /susa∫i/, modified to enable recording of eight individual EFRs, two from each vowel for different formants and one from each fricative. In experiment I, sensitivity of the paradigm to changes in audibility due to varying stimulus level and use of hearing aids was tested. In experiment II, sensitivity of the paradigm to changes in aided audible bandwidth was evaluated. As well, experiment II aimed to test convergent validity of the EFR paradigm by comparing the effect of bandwidth on EFRs and behavioral outcome measures of hearing aid fitting. Design: Twenty-one adult hearing aid users with mild to moderately severe sensorineural hearing loss participated in the study. To evaluate the effects of level and amplification in experiment I, the stimulus was presented at 50 and 65 dB SPL through an ER-2 insert earphone in unaided conditions and through individually verified hearing aids in aided conditions. Behavioral thresholds of EFR carriers were obtained using an ER-2 insert earphone to estimate sensation level of EFR carriers. To evaluate the effect of aided audible bandwidth in experiment II, EFRs were elicited by /susa∫i/ low-pass filtered at 1, 2, and 4 kHz and presented through the programmed hearing aid. EFRs recorded in the 65 dB SPL aided condition in experiment I represented the full bandwidth condition. EEG was recorded from the vertex to the nape of the neck over 300 sweeps. Speech discrimination using the University of Western Ontario Distinctive Feature Differences test and sound quality rating using the Multiple-Stimulus Hidden Reference and Anchor paradigm were measured in the same bandwidth conditions. Results: In experiment I, an increase in stimulus level above threshold and the use of amplification resulted in a significant increase in the number of EFRs detected per condition. At positive sensation levels, an increase in level demonstrated a significant increase in response amplitude in unaided and aided conditions. At 50 and 65 dB SPL, the use of amplification led to a significant increase in response amplitude for the majority of carriers. In experiment II, the number of EFR detections and the combined response amplitude of all eight EFRs improved with an increase in bandwidth up to 4 kHz. In contrast, behavioral measures continued to improve at wider bandwidths. Further change in EFR parameters was possibly limited by the hearing aid bandwidth. Significant positive correlations were found between EFR parameters and behavioral test scores in experiment II. Conclusions: The EFR paradigm demonstrates sensitivity to changes in audibility due to a change in stimulus level, bandwidth, and use of amplification in clinically feasible test times. The paradigm may thus have potential applications as an objective aided outcome measure. Further investigations exploring stimulus–response relationships in aided conditions and validation studies in children are warranted.


Audiology research | 2016

Translation and adaptation of five English language self-report health measures to South Indian Kannada language

Spoorthi Thammaiah; Vinaya Manchaiah; Vijayalakshmi Easwar; Rajalakshmi Krishna

The objective of this study was to translate and adapt five English self-report health measures to a South Indian language Kannada. Currently, no systematically developed questionnaires assessing hearing rehabilitation outcomes are available for clinical or research use in Kannada. The questionnaires included for translation and adaptation were the hearing handicap questionnaire, the international outcome inventory - hearing aids, the self-assessment of communication, the participation scale, and the assessment of quality of life – 4 dimensions. The questionnaires were translated and adapted using the American Association of Orthopedic Surgeons (AAOS) guidelines. The five stages followed in the study included: i) forward translation; ii) common translation synthesis; iii) backward translation; iv) expert committee review; v) pre-final testing. In this paper, in addition to a description of the process, we also highlight practical issues faced while adopting the procedure with an aim to help readers better understand the intricacies involved in such processes. This can be helpful to researchers and clinicians who are keen to adapt standard self-report questionnaires from other languages to their native language.


International Journal of Otolaryngology | 2012

Electroacoustic Comparison of Hearing Aid Output of Phonemes in Running Speech versus Isolation: Implications for Aided Cortical Auditory Evoked Potentials Testing

Vijayalakshmi Easwar; David W. Purcell; Susan Scollie

Background. Functioning of nonlinear hearing aids varies with characteristics of input stimuli. In the past decade, aided speech evoked cortical auditory evoked potentials (CAEPs) have been proposed for validation of hearing aid fittings. However, unlike in running speech, phonemes presented as stimuli during CAEP testing are preceded by silent intervals of over one second. Hence, the present study aimed to compare if hearing aids process phonemes similarly in running speech and in CAEP testing contexts. Method. A sample of ten hearing aids was used. Overall phoneme level and phoneme onset level of eight phonemes in both contexts were compared at three input levels representing conversational speech levels. Results. Differences of over 3 dB between the two contexts were noted in one-fourth of the observations measuring overall phoneme levels and in one-third of the observations measuring phoneme onset level. In a majority of these differences, output levels of phonemes were higher in the running speech context. These differences varied across hearing aids. Conclusion. Lower output levels in the isolation context may have implications for calibration and estimation of audibility based on CAEPs. The variability across hearing aids observed could make it challenging to predict differences on an individual basis.


Ear and Hearing | 2015

Effect of Stimulus Level and Bandwidth on Speech-Evoked Envelope Following Responses in Adults With Normal Hearing.

Vijayalakshmi Easwar; David W. Purcell; Steven J. Aiken; Vijay Parsa; Susan Scollie

Objective: The use of auditory evoked potentials as an objective outcome measure in infants fitted with hearing aids has gained interest in recent years. This article proposes a test paradigm using speech-evoked envelope following responses (EFRs) for use as an objective-aided outcome measure. The method uses a running speech-like, naturally spoken stimulus token /susa∫i/ (fundamental frequency [f0] = 98 Hz; duration 2.05 sec), to elicit EFRs by eight carriers representing low, mid, and high frequencies. Each vowel elicited two EFRs simultaneously, one from the region of formant one (F1) and one from the higher formants region (F2+). The simultaneous recording of two EFRs was enabled by lowering f0 in the region of F1 alone. Fricatives were amplitude modulated to enable recording of EFRs from high-frequency spectral regions. The present study aimed to evaluate the effect of level and bandwidth on speech-evoked EFRs in adults with normal hearing. As well, the study aimed to test convergent validity of the EFR paradigm by comparing it with changes in behavioral tasks due to bandwidth. Design: Single-channel electroencephalogram was recorded from the vertex to the nape of the neck over 300 sweeps in two polarities from 20 young adults with normal hearing. To evaluate the effects of level in experiment I, EFRs were recorded at test levels of 50 and 65 dB SPL. To evaluate the effects of bandwidth in experiment II, EFRs were elicited by /susa∫i/ low-pass filtered at 1, 2, and 4 kHz, presented at 65 dB SPL. The 65 dB SPL condition from experiment I represented the full bandwidth condition. EFRs were averaged across the two polarities and estimated using a Fourier analyzer. An F test was used to determine whether an EFR was detected. Speech discrimination using the University of Western Ontario Distinctive Feature Differences test and sound quality rating using the Multiple Stimulus Hidden Reference and Anchors paradigm were measured in identical bandwidth conditions. Results: In experiment I, the increase in level resulted in a significant increase in response amplitudes for all eight carriers (mean increase of 14 to 50 nV) and the number of detections (mean increase of 1.4 detections). In experiment II, an increase in bandwidth resulted in a significant increase in the number of EFRs detected until the low-pass filtered 4 kHz condition and carrier-specific changes in response amplitude until the full bandwidth condition. Scores in both behavioral tasks increased with bandwidth up to the full bandwidth condition. The number of detections and composite amplitude (sum of all eight EFR amplitudes) significantly correlated with changes in behavioral test scores. Conclusions: Results suggest that the EFR paradigm is sensitive to changes in level and audible bandwidth. This may be a useful tool as an objective-aided outcome measure considering its running speech-like stimulus, representation of spectral regions important for speech understanding, level and bandwidth sensitivity, and clinically feasible test times. This paradigm requires further validation in individuals with hearing loss, with and without hearing aids.


Brain Topography | 2018

Cortical Processing of Level Cues for Spatial Hearing is Impaired in Children with Prelingual Deafness Despite Early Bilateral Access to Sound

Vijayalakshmi Easwar; Michael Deighton; Blake C. Papsin; Karen A. Gordon

Bilateral cochlear implantation aims to restore binaural hearing, important for spatial hearing, to children who are deaf. Improvements over unilateral implant use are attributed largely to the detection of interaural level differences (ILDs) but emerging evidence of impaired sound localization and binaural fusion suggest that these binaural cues are abnormally coded by the auditory system. We used multichannel electroencephalography (EEG) to assess cortical responses to ILDs in two groups: 13 children who received early bilateral cochlear implants (CIs) simultaneously, known to protect the developing auditory cortices from unilaterally driven reorganization, and 15 age matched peers with normal hearing. EEG source analyses indicated a dominance of right auditory cortex in both groups. Expected reductions in activity to ipsilaterally weighted ILDs were evident in the right hemisphere of children with normal hearing. By contrast, cortical activity in children with CIs showed: (1) limited ILD sensitivity in either cortical hemisphere, (2) limited correlation with reliable behavioral right-left lateralization of ILDs (in 10/12 CI users), and (3) deficits in parieto-occipital areas and the cerebellum. Thus, expected cortical ILD coding develops with normal hearing but is affected by developmental deafness despite early and simultaneous bilateral implantation. Findings suggest that impoverished fidelity of ILDs in independently functioning CIs may be impeding development of cortical ILD sensitivity in children who are deaf but do not altogether limit benefits of listening with bilateral CIs. Future efforts to provide consistent/accurate ILDs through auditory prostheses including CIs could improve binaural hearing for children with hearing loss.


Journal of The American Academy of Audiology | 2017

Impact of Consistency in Daily Device Use on Speech Perception Abilities in Children with Cochlear Implants: Datalogging Evidence

Vijayalakshmi Easwar; Joseph Sanfilippo; Blake C. Papsin; Karen A. Gordon

BACKGROUND Cochlear implants (CIs) give children with severe to profound hearing loss access to sound. There appears to be a dose effect of sound exposure on speech perception abilities as shown by the positive influence of early implantation and CI experience. The consistency in device use per day could also affect sound dose, potentially affecting perceptual abilities in children with CIs. PURPOSE The objectives of the present study were to identify the impact of consistency in device use on: (1) speech perception abilities and (2) asymmetry in speech perception abilities between bilateral CIs. RESEARCH DESIGN Retrospective analysis. STUDY SAMPLE To achieve the first objective, data from 65 children (age range at speech test: 1.91-18.05 yrs) with one (unilaterally implanted or bimodal) or two CIs (sequentially or simultaneously implanted) were included. A subset of data from 40 children with bilateral CIs was included to achieve the second objective. Of the 40 children with two CIs, 15 received their CIs sequentially. DATA COLLECTION AND ANALYSIS Device use information was extracted from datalogs stored in personal speech processors using custom software. Speech perception scores per CI collected in quiet were also evaluated. Multiple regression was used to assess the impact of daily CI use, while controlling for factors previously identified to affect speech perception: age at speech test, length of pre-CI (acoustic) hearing experience, length of CI hearing experience, and order of CI for the first objective, and CI category (simultaneous/sequential implantation), interimplant delay, and length of CI experience for the second objective. RESULTS On average, children wore their CIs for 11.59 ± 2.86 hours/day and, with one CI, exhibited 65.07 ± 22.64% accuracy on speech perception tests. Higher monaural speech perception scores were associated with longer everyday CI use and CI experience (p < 0.05). Among children with bilateral CIs, those with simultaneously implanted CIs and similar bilateral hearing experience demonstrated a small but significant right ear advantage with higher speech perception scores when using the right rather than left CI (mean difference = 4.55 ± 9.83%). The asymmetry in speech perception between CIs was larger and more variable in children who received their CIs sequentially (mean difference CI1-CI2 = 27.48 ± 24.87%). These asymmetries decreased with longer/consistent everyday use of the newer CI (p < 0.05). Yet, despite consistent everyday device use of the second CI (>12 hours/day), only a small proportion of children implanted sequentially (one out of seven children) achieved symmetrical function similar to children with simultaneously received bilateral CIs. CONCLUSIONS Consistent everyday CI use contributes to higher speech perception scores. Although consistent CI use can help reduce the asymmetry in speech perception abilities of children with sequentially implanted CIs subsequent to interimplant delay, residual asymmetry often persists.

Collaboration


Dive into the Vijayalakshmi Easwar's collaboration.

Top Co-Authors

Avatar

David W. Purcell

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar

Susan Scollie

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Danielle Glista

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar

Sriram Boothalingam

University of Western Ontario

View shared research outputs
Researchain Logo
Decentralizing Knowledge