Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vijayalakshmi Varma is active.

Publication


Featured researches published by Vijayalakshmi Varma.


Diabetes | 2006

OXPAT/PAT-1 Is a PPAR-Induced Lipid Droplet Protein That Promotes Fatty Acid Utilization

Nathan E. Wolins; Benjamin K. Quaynor; James R. Skinner; Anatoly Tzekov; Michelle A. Croce; Matthew C. Gropler; Vijayalakshmi Varma; Aiwei Yao-Borengasser; Neda Rasouli; Philip A. Kern; Brian N. Finck; Perry E. Bickel

Lipid droplet proteins of the PAT (perilipin, adipophilin, and TIP47) family regulate cellular neutral lipid stores. We have studied a new member of this family, PAT-1, and found that it is expressed in highly oxidative tissues. We refer to this protein as “OXPAT.” Physiologic lipid loading of mouse liver by fasting enriches OXPAT in the lipid droplet tissue fraction. OXPAT resides on lipid droplets with the PAT protein adipophilin in primary cardiomyocytes. Ectopic expression of OXPAT promotes fatty acid–induced triacylglycerol accumulation, long-chain fatty acid oxidation, and mRNAs associated with oxidative metabolism. Consistent with these observations, OXPAT is induced in mouse adipose tissue, striated muscle, and liver by physiological (fasting), pathophysiological (insulin deficiency), pharmacological (peroxisome proliferator–activated receptor [PPAR] agonists), and genetic (muscle-specific PPARα overexpression) perturbations that increase fatty acid utilization. In humans with impaired glucose tolerance, PPARγ agonist treatment induces adipose OXPAT mRNA. Further, adipose OXPAT mRNA negatively correlates with BMI in nondiabetic humans. Our collective data in cells, mice, and humans suggest that OXPAT is a marker for PPAR activation and fatty acid oxidation. OXPAT likely contributes to adaptive responses to the fatty acid burden that accompanies fasting, insulin deficiency, and overnutrition, responses that are defective in obesity and type 2 diabetes.


American Journal of Physiology-endocrinology and Metabolism | 2009

Muscle inflammatory response and insulin resistance: synergistic interaction between macrophages and fatty acids leads to impaired insulin action

Vijayalakshmi Varma; Aiwei Yao-Borengasser; Neda Rasouli; Greg T. Nolen; Bounleut Phanavanh; Tasha Starks; Cathy M. Gurley; Pippa Simpson; Robert E. McGehee; Philip A. Kern; Charlotte A. Peterson

Obesity is characterized by adipose tissue expansion as well as macrophage infiltration of adipose tissue. This results in an increase in circulating inflammatory cytokines and nonesterified fatty acids, factors that cause skeletal muscle insulin resistance. Whether obesity also results in skeletal muscle inflammation is not known. In this study, we quantified macrophages immunohistochemically in vastus lateralis biopsies from eight obese and eight lean subjects. Our study demonstrates that macrophages infiltrate skeletal muscle in obesity, and we developed an in vitro system to study this mechanistically. Myoblasts were isolated from vastus lateralis biopsies and differentiated in culture. Coculture of differentiated human myotubes with macrophages in the presence of palmitic acid, to mimic an obese environment, revealed that macrophages in the presence of palmitic acid synergistically augment cytokine and chemokine expression in myotubes, decrease IkappaB-alpha protein expression, increase phosphorylated JNK, decrease phosphorylated Akt, and increase markers of muscle atrophy. These results suggest that macrophages alter the inflammatory state of muscle cells in an obese milieu, inhibiting insulin signaling. Thus in obesity both adipose tissue and skeletal muscle inflammation may contribute to insulin resistance.


Diabetes | 2008

Thrombospondin-1 Is an Adipokine Associated With Obesity, Adipose Inflammation, and Insulin Resistance

Vijayalakshmi Varma; Aiwei Yao-Borengasser; Angela M. Bodles; Neda Rasouli; Bounleut Phanavanh; Greg T. Nolen; Emily M. Kern; Radhakrishnan Nagarajan; Horace J. Spencer; Mi-Jeong Lee; Susan K. Fried; Robert E. McGehee; Charlotte A. Peterson; Philip A. Kern

OBJECTIVE—We examined the relationship between the expression of thrombospondin (TSP)1, an antiangiogenic factor and regulator of transforming growth factor-β activity, obesity, adipose inflammation, and insulin resistance. RESEARCH DESIGN AND METHODS—TSP1 gene expression was quantified in subcutaneous adipose tissue (SAT) of 86 nondiabetic subjects covering a wide range of BMI and insulin sensitivity, from visceral adipose (VAT) and SAT from 14 surgical patients and from 38 subjects with impaired glucose tolerance randomized to receive either pioglitazone or metformin for 10 weeks. An adipocyte culture system was also used to assess the effects of pioglitazone and coculture with macrophages on TSP1 gene expression. RESULTS—TSP1 mRNA was significantly associated with obesity (BMI) and insulin resistance (low insulin sensitivity index). Relatively strong positive associations were seen with markers of inflammation, including CD68, macrophage chemoattractant protein-1, and plasminogen activator inhibitor (PAI)-1 mRNA (r ≥ 0.46, P = 0.001 for each), that remained significant after controlling for BMI and Si. However, TSP1 mRNA was preferentially expressed in adipocyte fraction, whereas inflammatory markers predominated in stromal vascular fraction. Coculture of adipocytes and macrophages augmented TSP1 gene expression and secretion from both cell types. Pioglitazone (not metformin) treatment resulted in a 54% decrease (P < 0.04) in adipose TSP gene expression, as did in vitro pioglitazone treatment of adipocytes. CONCLUSIONS—TSP1 is a true adipokine that is highly expressed in obese, insulin-resistant subjects; is highly correlated with adipose inflammation; and is decreased by pioglitazone. TSP1 is an important link between adipocytes and macrophage-driven adipose tissue inflammation and may mediate the elevation of PAI-1 that promotes a prothrombotic state.


Diabetes | 2006

Lipin expression is attenuated in adipose tissue of insulin-resistant human subjects and increases with peroxisome proliferator-activated receptor γ activation

Activation Yao-Borengasser; Neda Rasouli; Vijayalakshmi Varma; Leslie M. Miles; Bounleut Phanavanh; Tasha Starks; Jack Phan; Horace J. Spencer; Robert E. McGehee; Karen Reue; Philip A. Kern

Lipin-α and -β are the alternatively spliced gene products of the Lpin1 gene, whose product lipin is required for adipocyte differentiation. Lipin deficiency causes lipodystrophy, fatty liver, and insulin resistance in mice, whereas adipose tissue lipin overexpression results in increased adiposity but improved insulin sensitivity. To assess lipin expression and its relation to insulin resistance in humans, we examined lipin-α and -β mRNA levels in subjects with normal or impaired glucose tolerance. We found higher expression levels of both lipin isoforms in lean, insulin-sensitive subjects. When compared with normal glucose-tolerant subjects, individuals with impaired glucose tolerance were more insulin resistant, demonstrated higher levels of intramyocellular lipids (IMCLs), and expressed ∼50% lower levels of lipin-α and -β. In addition, there was a strong inverse correlation between adipose tissue lipin expression and muscle IMCLs but no evidence for an increase in muscle lipid oxidation. After treatment of the impaired glucose-tolerant subjects with insulin sensitizers for 10 weeks, pioglitazone (but not metformin) resulted in a 60% increase in the insulin sensitivity index (Si) and a 32% decrease in IMCLs (both P < 0.01), along with an increase in lipin-β (but not lipin-α) expression by 200% (P < 0.005). Lipin expression in skeletal muscle, however, was not related to obesity or insulin resistance. Hence, high adipose tissue lipin expression is found in insulin-sensitive subjects, and lipin-β expression increases following treatment with pioglitazone. These results suggest that increased adipogenesis and/or lipogenesis in subcutaneous fat, mediated by the LPIN1 gene, may prevent lipotoxicity in muscle, leading to improved insulin sensitivity.


Journal of Lipid Research | 2006

Pioglitazone induces apoptosis of macrophages in human adipose tissue.

Angela M. Bodles; Vijayalakshmi Varma; Aiwei Yao-Borengasser; Bounleut Phanavanh; Charlotte A. Peterson; Robert E. McGehee; Neda Rasouli; Martin Wabitsch; Philip A. Kern

Metabolic syndrome and type 2 diabetes mellitus are associated with an increased number of macrophage cells that infiltrate white adipose tissue (WAT). Previously, we demonstrated that the treatment of subjects with impaired glucose tolerance (IGT) with the peroxisome proliferator-activated receptor γ (PPARγ) agonist pioglitazone resulted in a decrease in macrophage number in adipose tissue. Here, adipose tissue samples from IGT subjects treated with pioglitazone were examined for apoptosis with terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) staining. TUNEL-positive cells were identified, and there was a significant 42% increase in TUNEL-positive cells following pioglitazone treatment. Overlay experiments with anti-CD68 antibody demonstrated that most of the TUNEL-positive cells were macrophages. To determine whether macrophage apoptosis was a direct or indirect effect of pioglitazone treatment, human THP1 cells were treated with pioglitazone in vitro, demonstrating increased TUNEL staining in a dose- and time-dependent manner. Furthermore, the appearance of the active proteolytic subunits of caspase-3 and caspase-9 were detected in cell lysate from THP1 cells and also increased in a dose- and time-dependent manner following pioglitazone treatment. Pretreatment with a PPARγ inhibitor, GW9662, prevented pioglitazone induction of the apoptotic pathway in THP1 cells. Differentiated human adipocytes did not show any significant increase in apoptosis after treatment in vitro with piolgitazone. These findings indicate that PPARγ has distinct functions in different cell types in WAT, such that pioglitazone reduces macrophage infiltration by inducing apoptotic cell death specifically in macrophages through PPARγ activation.


The Journal of Clinical Endocrinology and Metabolism | 2008

Stearoyl-Coenzyme A Desaturase 1 Gene Expression Increases after Pioglitazone Treatment and Is Associated with Peroxisomal Proliferator-Activated Receptor-γ Responsiveness

Aiwei Yao-Borengasser; Negah Rassouli; Vijayalakshmi Varma; Angela M. Bodles; Neda Rasouli; Resat Unal; Bounleut Phanavanh; Gouri Ranganathan; Robert E. McGehee; Philip A. Kern

CONTEXT AND OBJECTIVE Stearoyl-coenzyme A desaturase (SCD1) is the rate-limiting enzyme that converts palmitoyl- and stearoyl-coenzyme A to palmitoleoyl- and oleoyl-cownzyme A, respectively. SCD-deficient mice are protected from obesity, and the ob/ob mouse has high levels of SCD. This study was designed to better characterize SCD1 gene and protein expression in humans with varying insulin sensitivity. DESIGN, PARTICIPANTS, AND SETTING In a university hospital clinical research center setting, SCD1 gene expression was measured in sc adipose and vastus lateralis muscle of 86 nondiabetic subjects; 10 wk of pioglitazone (45 mg daily) and metformin (1000 mg twice daily) treatment were assessed in 36 impaired glucose-tolerant subjects. Adipocytes were treated with pioglitazone, and SCD1 expression was attenuated with small interfering RNA (siRNA) to examine other adipocyte genes. RESULTS There was no significant relationship between adipose or muscle SCD1 mRNA and either body mass index or insulin sensitivity. After pioglitazone (but not metformin) treatment, there was a 2-fold increase in SCD1 mRNA and protein in adipose tissue. Pioglitazone also increased SCD1 in vitro. There were significant positive correlations between SCD1 and peroxisomal proliferator-activated receptor gamma (PPARgamma) as well as other PPARgamma-responsive genes, including lipin-beta, AGPAT2, RBP4, adiponectin receptors, CD68, and MCP1. When SCD1 expression was inhibited with a siRNA, lipin-beta, AGPAT2, and the adiponectin R2 receptor expression were decreased, and adipocyte MCP-1 was increased. CONCLUSIONS SCD1 is closely linked to PPARgamma expression in humans, and is increased by PPARgamma agonists. The change in expression of some downstream PPARgamma targets after SCD1 knockdown suggests that PPARgamma up-regulation of SCD1 leads to increased lipogenesis and potentiation of adiponectin signaling.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2009

Association of Scavenger Receptors in Adipose Tissue With Insulin Resistance in Nondiabetic Humans

Neda Rasouli; Aiwei Yao-Borengasser; Vijayalakshmi Varma; Horace J. Spencer; Robert E. McGehee; Charlotte A. Peterson; Jawahar L. Mehta; Philip A. Kern

Objective—Scavenger receptors play crucial roles in the pathogenesis of atherosclerosis, but their role in insulin resistance has not been explored. We hypothesized that scavenger receptors are present in human adipose tissue resident macrophages, and their gene expression is regulated by adiponectin and thaizolidinediones. Methods and Results—The gene expression of scavenger receptors including scavenger receptor-A (SRA), CD36, and lectin-like oxidized LDL receptor-1 (LOX-1) were studied in subcutaneous adipose tissue of nondiabetic subjects and in vitro. Adipose tissue SRA expression was independently associated with insulin resistance. Pioglitazone downregulated SRA gene expression in adipose tissue of subjects with impaired glucose tolerance and decreased LOX-1 mRNA in vitro. Macrophage LOX-1 expression was decreased when macrophages were cocultured with adipocytes or when exposed to adipocyte conditioned medium. Adding adiponectin neutralizing antibody resulted in a 2-fold increase in LOX-1 gene expression demonstrating that adiponectin regulates LOX-1 expression. Conclusion—Adipose tissue scavenger receptors are strongly associated with insulin resistance. Pioglitazone and adiponectin regulate gene expression of SRA and LOX-1, and this may have clinical implications in arresting the untoward sequalae of insulin resistance and diabetes, including accelerated atherosclerosis.


Metabolism-clinical and Experimental | 2011

Adipose triglyceride lipase expression in human adipose tissue and muscle. Role in insulin resistance and response to training and pioglitazone

Aiwei Yao-Borengasser; Vijayalakshmi Varma; Robert H. Coker; Gouri Ranganathan; Bounleut Phanavanh; Neda Rasouli; Philip A. Kern

Adipose triglyceride lipase (ATGL) catalyzes the first step in adipocyte and muscle triglyceride hydrolysis, and comparative gene identification-58 (CGI-58) is an essential cofactor. We studied the expression of ATGL and CGI-58 in human adipose and muscle and examined correlations with markers of muscle fatty acid oxidation. Nondiabetic volunteers were studied. Subjects with impaired glucose tolerance were treated with pioglitazone or metformin for 10 weeks. Subjects with normal glucose tolerance underwent a 12-week training program. We examined changes in ATGL and CGI-58 with obesity and insulin resistance, and effects of exercise and pioglitazone. Adipose triglyceride lipase messenger RNA (mRNA) expression showed no correlation with either body mass index or insulin sensitivity index in either adipose or muscle. However, adipose ATGL protein levels were inversely correlated with body mass index (r = -0.64, P < .02) and positively correlated with insulin sensitivity index (r = 0.67, P < .02). In muscle, ATGL mRNA demonstrated a strong positive relationship with carnitine palmitoyltransferase I mRNA (r = 0.82, P < .0001) and the adiponectin receptors AdipoR1 mRNA (r = 0.71, P < .0001) and AdipoR2 mRNA (r = 0.74, P < .0001). Muscle CGI-58 mRNA was inversely correlated with intramyocellular triglyceride in both type 1 (r = -0.35, P < .05) and type 2 (r = -0.40, P < .05) fibers. Exercise training resulted in increased muscle ATGL, and pioglitazone increased adipose ATGL by 31% (P < .05). Pioglitazone also increased ATGL in adipocytes. Adipose ATGL protein is decreased with insulin resistance and obesity; and muscle ATGL mRNA is associated with markers of fatty acid oxidation in muscle, as is CGI-58. The regulation of ATGL and CGI-58 has important implications for the control of lipotoxicity.


Metabolic Syndrome and Related Disorders | 2012

Effect of Endoplasmic Reticulum Stress on Inflammation and Adiponectin Regulation in Human Adipocytes

Ashis K. Mondal; Swapan K. Das; Vijayalakshmi Varma; Greg T. Nolen; Robert E. McGehee; Steven C. Elbein; Jeanne Y. Wei; Gouri Ranganathan

The endoplasmic reticulum (ER) of adipocytes plays a major role in the assembly and secretion of adipokines. The levels of serum adiponectin, secreted by adipocytes, are decreased in insulin resistance, diabetes, and obesity. The role of ER stress in downregulating adiponectin levels has been demonstrated in mouse models of obesity. Studies examining human adipose tissue have indicated that there is an increase in the ER stress transcript HSPA5 with increased body mass index (BMI). However, it is not established whether ER stress results in changes in adiponectin levels or multimerization in human adipocytes. We examined whether the induction of ER stress using tunicamycin, thapsigargin, or palmitate alters the messenger RNA (mRNA) and protein expression of adiponectin and the mRNA expression of chaperones ERP44 and ERO1 in adult-derived human adipocyte stem (ADHAS) cells. ER stress was measured using key indicators of ER stress-HSPA5, ERN1, CHOP, and GADD34, as well as changes in eIF2α phosphorylation. Because ER stress is suggested to be the proximal cause of inflammation in adipocytes, we further examined the change in inflammatory status by quantitating the change in Iκβ-α protein following the induction of ER stress. Our studies indicate that: (1) ER stress markers were increased to a higher degree using tunicamycin or thapsigargin compared to palmitate; (2) ER stress significantly decreased adiponectin mRNA in response to tunicamycin and thapsigargin, but palmitate did not decrease adiponectin mRNA levels. In all three instances, the induction of ER stress was accompanied by a decrease in adiponectin protein as well as adiponectin multimerization. All three inducers of ER stress increased tumor necrosis factor-α (TNF-α) mRNA and decreased Iκβ-α protein in adipocytes. The data suggest that ER stress modifies adiponectin secretion and induces inflammation in ADHAS cells.


BMC Bioinformatics | 2010

Two new ArrayTrack libraries for personalized biomedical research.

Joshua Xu; Carolyn Wise; Vijayalakshmi Varma; Hong Fang; Baitang Ning; Huixiao Hong; Weida Tong; Jim Kaput

BackgroundRecent advances in high-throughput genotyping technology are paving the way for research in personalized medicine and nutrition. However, most of the genetic markers identified from association studies account for a small contribution to the total risk/benefit of the studied phenotypic trait. Testing whether the candidate genes identified by association studies are causal is critically important to the development of personalized medicine and nutrition. An efficient data mining strategy and a set of sophisticated tools are necessary to help better understand and utilize the findings from genetic association studies.DescriptionSNP (single nucleotide polymorphism) and QTL (quantitative trait locus) libraries were constructed and incorporated into ArrayTrack, with user-friendly interfaces and powerful search features. Data from several public repositories were collected in the SNP and QTL libraries and connected to other domain libraries (genes, proteins, metabolites, and pathways) in ArrayTrack. Linking the data sets within ArrayTrack allows searching of SNP and QTL data as well as their relationships to other biological molecules. The SNP library includes approximately 15 million human SNPs and their annotations, while the QTL library contains publically available QTLs identified in mouse, rat, and human. The QTL library was developed for finding the overlap between the map position of a candidate or metabolic gene and QTLs from these species. Two use cases were included to demonstrate the utility of these tools. The SNP and QTL libraries are freely available to the public through ArrayTrack at http://www.fda.gov/ArrayTrack.ConclusionsThese libraries developed in ArrayTrack contain comprehensive information on SNPs and QTLs and are further cross-linked to other libraries. Connecting domain specific knowledge is a cornerstone of systems biology strategies and allows for a better understanding of the genetic and biological context of the findings from genetic association studies.

Collaboration


Dive into the Vijayalakshmi Varma's collaboration.

Top Co-Authors

Avatar

Neda Rasouli

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aiwei Yao-Borengasser

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Robert E. McGehee

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Bounleut Phanavanh

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Greg T. Nolen

National Center for Toxicological Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Angela M. Bodles

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Gouri Ranganathan

University of Arkansas for Medical Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge