Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vijayan Manoharan is active.

Publication


Featured researches published by Vijayan Manoharan.


Lab on a Chip | 2014

Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs

Luiz E. Bertassoni; Martina Cecconi; Vijayan Manoharan; Mehdi Nikkhah; Jesper Hjortnaes; Ana Luiza Cristino; Giada D. G. Barabaschi; Danilo Demarchi; Mehmet R. Dokmeci; Yunzhi Yang; Ali Khademhosseini

Vascularization remains a critical challenge in tissue engineering. The development of vascular networks within densely populated and metabolically functional tissues facilitate transport of nutrients and removal of waste products, thus preserving cellular viability over a long period of time. Despite tremendous progress in fabricating complex tissue constructs in the past few years, approaches for controlled vascularization within hydrogel based engineered tissue constructs have remained limited. Here, we report a three dimensional (3D) micromolding technique utilizing bioprinted agarose template fibers to fabricate microchannel networks with various architectural features within photocrosslinkable hydrogel constructs. Using the proposed approach, we were able to successfully embed functional and perfusable microchannels inside methacrylated gelatin (GelMA), star poly(ethylene glycol-co-lactide) acrylate (SPELA), poly(ethylene glycol) dimethacrylate (PEGDMA) and poly(ethylene glycol) diacrylate (PEGDA) hydrogels at different concentrations. In particular, GelMA hydrogels were used as a model to demonstrate the functionality of the fabricated vascular networks in improving mass transport, cellular viability and differentiation within the cell-laden tissue constructs. In addition, successful formation of endothelial monolayers within the fabricated channels was confirmed. Overall, our proposed strategy represents an effective technique for vascularization of hydrogel constructs with useful applications in tissue engineering and organs on a chip.


Biofabrication | 2014

Direct-write bioprinting of cell-laden methacrylated gelatin hydrogels.

Luiz E. Bertassoni; Juliana C Cardoso; Vijayan Manoharan; Ana Luiza Cristino; Nupura S Bhise; Wesleyan A Araujo; Pinar Zorlutuna; Nihal Engin Vrana; Amir M. Ghaemmaghami; Mehmet R. Dokmeci; Ali Khademhosseini

Fabrication of three dimensional (3D) organoids with controlled microarchitectures has been shown to enhance tissue functionality. Bioprinting can be used to precisely position cells and cell-laden materials to generate controlled tissue architecture. Therefore, it represents an exciting alternative for organ fabrication. Despite the rapid progress in the field, the development of printing processes that can be used to fabricate macroscale tissue constructs from ECM-derived hydrogels has remained a challenge. Here we report a strategy for bioprinting of photolabile cell-laden methacrylated gelatin (GelMA) hydrogels. We bioprinted cell-laden GelMA at concentrations ranging from 7 to 15% with varying cell densities and found a direct correlation between printability and the hydrogel mechanical properties. Furthermore, encapsulated HepG2 cells preserved cell viability for at least eight days following the bioprinting process. In summary, this work presents a strategy for direct-write bioprinting of a cell-laden photolabile ECM-derived hydrogel, which may find widespread application for tissue engineering, organ printing and the development of 3D drug discovery platforms.


Advanced Materials | 2016

Microfluidic Bioprinting of Heterogeneous 3D Tissue Constructs Using Low-Viscosity Bioink

Cristina Colosi; Su Ryon Shin; Vijayan Manoharan; Solange Massa; Marco Costantini; Andrea Barbetta; Mehmet R. Dokmeci; Mariella Dentini; Ali Khademhosseini

A novel bioink and a dispensing technique for 3D tissue-engineering applications are presented. The technique incorporates a coaxial extrusion needle using a low-viscosity cell-laden bioink to produce highly defined 3D biostructures. The extrusion system is then coupled to a microfluidic device to control the bioink arrangement deposition, demonstrating the versatility of the bioprinting technique. This low-viscosity cell-responsive bioink promotes cell migration and alignment within each fiber organizing the encapsulated cells.


Journal of Controlled Release | 2014

Organ-on-a-chip platforms for studying drug delivery systems.

Nupura S Bhise; João Ribas; Vijayan Manoharan; Yu Shrike Zhang; Alessandro Polini; Solange Massa; Mehmet R. Dokmeci; Ali Khademhosseini

Novel microfluidic tools allow new ways to manufacture and test drug delivery systems. Organ-on-a-chip systems - microscale recapitulations of complex organ functions - promise to improve the drug development pipeline. This review highlights the importance of integrating microfluidic networks with 3D tissue engineered models to create organ-on-a-chip platforms, able to meet the demand of creating robust preclinical screening models. Specific examples are cited to demonstrate the use of these systems for studying the performance of drug delivery vectors and thereby reduce the discrepancies between their performance at preclinical and clinical trials. We also highlight the future directions that need to be pursued by the research community for these proof-of-concept studies to achieve the goal of accelerating clinical translation of drug delivery nanoparticles.


Biofabrication | 2016

A liver-on-a-chip platform with bioprinted hepatic spheroids.

Nupura S Bhise; Vijayan Manoharan; Solange Massa; Ali Tamayol; Masoumeh Ghaderi; Mario Miscuglio; Qi Lang; Yu Shrike Zhang; Su Ryon Shin; Giovanni Calzone; Nasim Annabi; Thomas Shupe; Colin E. Bishop; Anthony Atala; Mehmet R. Dokmeci; Ali Khademhosseini

The inadequacy of animal models in correctly predicting drug and biothreat agent toxicity in humans has resulted in a pressing need for in vitro models that can recreate the in vivo scenario. One of the most important organs in the assessment of drug toxicity is liver. Here, we report the development of a liver-on-a-chip platform for long-term culture of three-dimensional (3D) human HepG2/C3A spheroids for drug toxicity assessment. The bioreactor design allowed for in situ monitoring of the culture environment by enabling direct access to the hepatic construct during the experiment without compromising the platform operation. The engineered bioreactor could be interfaced with a bioprinter to fabricate 3D hepatic constructs of spheroids encapsulated within photocrosslinkable gelatin methacryloyl (GelMA) hydrogel. The engineered hepatic construct remained functional during the 30 days culture period as assessed by monitoring the secretion rates of albumin, alpha-1 antitrypsin, transferrin, and ceruloplasmin, as well as immunostaining for the hepatocyte markers, cytokeratin 18, MRP2 bile canalicular protein and tight junction protein ZO-1. Treatment with 15 mM acetaminophen induced a toxic response in the hepatic construct that was similar to published studies on animal and other in vitro models, thus providing a proof-of-concept demonstration of the utility of this liver-on-a-chip platform for toxicity assessment.


Expert Opinion on Drug Discovery | 2014

Organs-on-a-chip: a new tool for drug discovery.

Alessandro Polini; Ljupcho Prodanov; Nupura S Bhise; Vijayan Manoharan; Mehmet R. Dokmeci; Ali Khademhosseini

Introduction: The development of emerging in vitro tissue culture platforms can be useful for predicting human response to new compounds, which has been traditionally challenging in the field of drug discovery. Recently, several in vitro tissue-like microsystems, also known as ‘organs-on-a-chip’, have emerged to provide new tools for better evaluating the effects of various chemicals on human tissue. Areas covered: The aim of this article is to provide an overview of the organs-on-a-chip systems that have been recently developed. First, the authors introduce single-organ platforms, focusing on the most studied organs such as liver, heart, blood vessels and lung. Later, the authors briefly describe tumor-on-a-chip platforms and highlight their application for testing anti-cancer drugs. Finally, the article reports a few examples of other organs integrated in microfluidic chips along with preliminary multiple-organs-on-a-chip examples. The article also highlights key fabrication points as well as the main application areas of these devices. Expert opinion: This field is still at an early stage and major challenges need to be addressed prior to the embracement of these technologies by the pharmaceutical industry. To produce predictive drug screening platforms, several organs have to be integrated into a single microfluidic system representative of a humanoid. The routine production of metabolic biomarkers of the organ constructs, as well as their physical environment, have to be monitored prior to and during the delivery of compounds of interest to be able to translate the findings into useful discoveries.


Small | 2016

Reduced Graphene Oxide-GelMA Hybrid Hydrogels as Scaffolds for Cardiac Tissue Engineering

Su Ryon Shin; Claudio Zihlmann; Mohsen Akbari; Pribpandao Assawes; Louis Cheung; Kaizhen Zhang; Vijayan Manoharan; Yu Shrike Zhang; Mehmet Yuksekkaya; Kai-Tak Wan; Mehdi Nikkhah; Mehmet R. Dokmeci; Xiaowu Shirley Tang; Ali Khademhosseini

Biomaterials currently used in cardiac tissue engineering have certain limitations, such as lack of electrical conductivity and appropriate mechanical properties, which are two parameters playing a key role in regulating cardiac cell behavior. Here, the myocardial tissue constructs are engineered based on reduced graphene oxide (rGO)-incorporated gelatin methacryloyl (GelMA) hybrid hydrogels. The incorporation of rGO into the GelMA matrix significantly enhances the electrical conductivity and mechanical properties of the material. Moreover, cells cultured on composite rGO-GelMA scaffolds exhibit better biological activities such as cell viability, proliferation, and maturation compared to ones cultured on GelMA hydrogels. Cardiomyocytes show stronger contractility and faster spontaneous beating rate on rGO-GelMA hydrogel sheets compared to those on pristine GelMA hydrogels, as well as GO-GelMA hydrogel sheets with similar mechanical property and particle concentration. Our strategy of integrating rGO within a biocompatible hydrogel is expected to be broadly applicable for future biomaterial designs to improve tissue engineering outcomes. The engineered cardiac tissue constructs using rGO incorporated hybrid hydrogels can potentially provide high-fidelity tissue models for drug studies and the investigations of cardiac tissue development and/or disease processes in vitro.


Journal of Materials Chemistry B | 2016

Nanoengineered biomimetic hydrogels for guiding human stem cell osteogenesis in three dimensional microenvironments

Arghya Paul; Vijayan Manoharan; Dorothee Krafft; Alexander Assmann; Jorge Alfredo Uquillas; Su Ryon Shin; Anwarul Hasan; Mohammad Asif Hussain; Adnan Memic; Akhilesh K. Gaharwar; Ali Khademhosseini

The ability to modulate stem cell differentiation in a three dimensional (3D) microenvironment for bone tissue engineering in absence of exogenous pharmaceutical agents such as bone morphogenic protein (BMP-2) remains a challenge. In this study, we introduce extracellular matrix (ECM)-mimicking nanocomposite hydrogels to induce osteogenic differentiation of human mesenchymal stem cells (hMSCs) for bone regeneration in absence of any osteoinducting factors. In particular, we have reinforced photocrosslinkable collagen-based matrix (gelatin methacryloyl, GelMA) used disk-shaped nanosilicates (nSi), a new class of two-dimensional (2D) nanomaterials. We show that nanoengineered hydrogels supported migration and proliferation of encapsulated hMSCs, with no signs of cell apoptosis or inflammatory cytokine responses. The addition of nSi significantly enhances osteogenic differentiation of encapsulated hMSCs as evident by the increase in alkaline phosphates (ALP) activity and deposition of biomineralized matrix compared to GelMA without nSi. We also show that microfabricated nanoengineered microgels can be used to pattern and control cellular behaviour. Furthermore, we also show that nanoengineered hydrogel have high biocompatibility as determined by in vivo experiments using immunocompetent rat model. Specifically, the hydrogels showed minimum localized immune responses, indicating it ability for tissue engineering applications. Overall, we showed the ability of nanoengineered hydrogels loaded with 2D nanosilicates for osteogenic differentiation of stem cells in vitro, in absence of any growth factors such as BMP-2. Our in vivo studies show high biocompatibility of nanocomposites and show the potential for growth factor free bone regeneration.


Lab on a Chip | 2015

A cost-effective fluorescence mini-microscope for biomedical applications

Yu Shrike Zhang; João Ribas; Akhtar Nadhman; Julio Aleman; Šeila Selimović; Sasha Cai Lesher-Perez; Ting Wang; Vijayan Manoharan; Su Ryon Shin; Alessia Damilano; Nasim Annabi; Mehmet R. Dokmeci; Shuichi Takayama; Ali Khademhosseini

We have designed and fabricated a miniature microscope from off-the-shelf components and a webcam, with built-in fluorescence capability for biomedical applications. The mini-microscope was able to detect both biochemical parameters, such as cell/tissue viability (e.g. live/dead assay), and biophysical properties of the microenvironment such as oxygen levels in microfabricated tissues based on an oxygen-sensitive fluorescent dye. This mini-microscope has adjustable magnifications from 8-60×, achieves a resolution as high as <2 μm, and possesses a long working distance of 4.5 mm (at a magnification of 8×). The mini-microscope was able to chronologically monitor cell migration and analyze beating of microfluidic liver and cardiac bioreactors in real time, respectively. The mini-microscope system is cheap, and its modularity allows convenient integration with a wide variety of pre-existing platforms including, but not limited to, cell culture plates, microfluidic devices, and organs-on-a-chip systems. Therefore, we envision its widespread application in cell biology, tissue engineering, biosensing, microfluidics, and organs-on-chips, which can potentially replace conventional bench-top microscopy where long-term in situ and large-scale imaging/analysis is required.


Journal of Materials Chemistry B | 2016

Tailoring biomaterial surface properties to modulate host-implant interactions: implication in cardiovascular and bone therapy.

Settimio Pacelli; Vijayan Manoharan; Anna Desalvo; Nikita Lomis; Kartikeya Singh Jodha; Satya Prakash; Arghya Paul

Host body response to a foreign medical device plays a critical role in defining its fate post implantation. It is thus important to control host-material interactions by designing innovative implant surfaces. In the recent years, biochemical and topographical features have been explored as main target to produce this new type of bioinert or bioresponsive implants. The review discusses specific biofunctional materials and strategies to achieve a precise control over implant surface properties and presents possible solutions to develop next generation of implants, particularly in the fields of bone and cardiovascular therapy.

Collaboration


Dive into the Vijayan Manoharan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mehmet R. Dokmeci

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Su Ryon Shin

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Yu Shrike Zhang

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Nupura S Bhise

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Solange Massa

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alessandro Polini

Massachusetts Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge