Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vikrant Rai is active.

Publication


Featured researches published by Vikrant Rai.


Journal of Biomedical Materials Research Part A | 2017

Recent strategies in cartilage repair: A systemic review of the scaffold development and tissue engineering

Vikrant Rai; Matthew F. Dilisio; Nicholas E. Dietz; Devendra K. Agrawal

Osteoarthritis results in irreparable loss of articular cartilage. Due to its avascular nature and low mitotic activity, cartilage has little intrinsic capacity for repair. Cartilage loss leads to pain, physical disability, movement restriction, and morbidity. Various treatment strategies have been proposed for cartilage regeneration, but the optimum treatment is yet to be defined. Tissue engineering with engineered constructs aimed towards developing a suitable substrate may help in cartilage regeneration by providing the mechanical, biological and chemical support to the cells. The use of scaffold as a substrate to support the progenitor cells or autologous chondrocytes has given promising results. Leakage of cells, poor cell survival, poor cell differentiation, inadequate integration into the host tissue, incorrect distribution of cells, and dedifferentiation of the normal cartilage are the common problems in tissue engineering. Current research is focused on improving mechanical and biochemical properties of scaffold to make it more efficient. The aim of this review is to provide a critical discussion on existing challenges, scaffold type and properties, and an update on ongoing recent developments in the architecture and composition of scaffold to enhance the proliferation and viability of mesenchymal stem cells.


PLOS ONE | 2016

Dendritic Cells Expressing Triggering Receptor Expressed on Myeloid Cells-1 Correlate with Plaque Stability in Symptomatic and Asymptomatic Patients with Carotid Stenosis

Vikrant Rai; Velidi H. Rao; Z. Shao; Devendra K. Agrawal

Atherosclerosis is a chronic inflammatory disease with atherosclerotic plaques containing inflammatory cells, including T-lymphocytes, dendritic cells (DCs) and macrophages that are responsible for progression and destabilization of atherosclerotic plaques. Stressed cells undergoing necrosis release molecules that act as endogenous danger signals to alert and activate innate immune cells. In atherosclerotic tissue the number of DCs increases with the progression of the lesion and produce several inflammatory cytokines and growth factors. Triggering receptor expressed on myeloid cells (TREM)-1 plays a crucial role in inflammation. However, relationship of DCs and the role of TREM-1 with the stability of atherosclerotic plaques have not been examined. In this study, we investigated the heterogeneity of the plaque DCs, myeloid (mDC1 and mDC2) and plasmacytoid (pDCs), and examined the expression of TREM-1 and their co-localization with DCs in the plaques from symptomatic (S) and asymptomatic (AS) patients with carotid stenosis. We found increased expression of HLA-DR, fascin, and TREM-1 and decreased expression of TREM-2 and α-smooth muscle actin in S compared to AS atherosclerotic carotid plaques. Both TREM-1 and fascin were co-localized suggesting increased expression of TREM-1 in plaque DCs of S compared to AS patients. These data were supported by increased mRNA transcripts of TREM-1 and decreased mRNA transcripts of TREM-2 in carotid plaques of S compared to AS patients. There was higher density of both CD1c+ mDC1 and CD141+ mDC2 in the carotid plaques from AS compared to S patients, where as the density of CD303+ pDCs were higher in the carotid plaques of S compared to AS patients. These findings suggest a potential role of pDCs and TREM-1 in atherosclerotic plaque vulnerability. Thus, newer therapies could be developed to selectively block TREM-1 for stabilizing atherosclerotic plaques.


Molecular and Cellular Biochemistry | 2018

Cellular and molecular targets for the immunotherapy of hepatocellular carcinoma

Vikrant Rai; Joe Abdo; Abdullah N. Alsuwaidan; Swati Agrawal; Poonam Sharma; Devendra K. Agrawal

Liver cancer is the sixth most common cancer worldwide and 3rd most common cause of cancer-related death. Hepatocellular carcinoma (HCC) represents more than 90% of primary liver cancer and is a major public health problem. Due to the advanced stages of HCC at the time of diagnosis, utilizing the conventional treatment for solid tumors frequently ends with treatment failure, recurrence, or poor survival. HCC is highly refractory to chemotherapy and other systemic treatments, and locoregional therapies or selective internal radiation therapies are largely palliative. Considering how the pathogenesis of HCC often induces an immunosuppressed state which is further amplified by post-treatment recurrence and reactivation, immunostimulation provides a potential novel approach for the treatment of HCC. Immune response(s) of the body may be potentiated by immunomodulation of various effector cells such as B-cells, T-cells, Treg cells, natural killer cells, dendritic cells, cytotoxic T-lymphocytes, and other antigen-presenting cells; cellular components such as genes and microRNA; and molecules such as proteins, proteoglycans, surface receptors, chemokines, and cytokines. Targeting these effectors individually has helped in the development of newer therapeutic approaches; however, combinational therapies targeting multi-faceted biomarkers have yielded better results. Still, there is a need for further research to develop novel therapeutic strategies which may act as either complementary or an alternative treatment to the standard therapy protocols of HCC. This review focuses on potential cellular and molecular targets, as well as the role of virotherapy and combinational therapy in the treatment of HCC.


American Journal of Physiology-heart and Circulatory Physiology | 2015

Blockade of Ets-1 attenuates epidermal growth factor-dependent collagen loss in human carotid plaque smooth muscle cells

Velidi H. Rao; Vikrant Rai; Samantha Stoupa; Devendra K. Agrawal

Although degradation of extracellular matrix by matrix metalloproteinases (MMPs) is thought to be involved in symptomatic (S) carotid plaques in atherosclerosis, the mechanisms of MMP expression are poorly understood. Here, we demonstrate that collagen loss in vascular smooth vessel cells (VSMCs) isolated from S plaques was induced by epidermal growth factor (EGF) through the activation of p38-MAPK and JNK-MAPK pathways. Inhibitors of p38-MAPK and JNK-MAPK signaling pathways downregulated the expression of MMP-1 and MMP-9. In addition, we examined whether v-ets erythroblastosis virus E26 oncogene homologue 1 (Ets-1), an important regulator of different genes, is involved in destabilizing S plaques in patients with carotid stenosis. We demonstrate that EGF induces Ets-1 expression and decreases interstitial and basement membrane collagen in vascular smooth muscle cells (VSMCs) from patients with carotid stenosis. Increased expression of MMP-1 and -9 and decreased collagen mRNA transcripts were also found in Ets-1-overexpressed VSMCs. Transfection with both dominant-negative form of Ets-1 and small interfering RNA blocked EGF-induced MMP-1 and -9 expressions and increased the mRNA transcripts for collagen I (α1) and collagen III (α1) in S compared with asymptomatic (AS) carotid plaques. Inhibitors of p38-MAPK (SB202190) and JNK-MAPK (SP600125) signaling pathways decreased the expression of Ets-1, MMP-1, and MMP-9 and increased collagen type I and III expression in EGF-treated VSMCs. This study provides a mechanistic insight into the role of Ets-1 in the plaque destabilization in patients with carotid stenosis involving p38-MAPK and JNK signaling pathways.


Molecular and Cellular Biochemistry | 2017

Damage-Associated Molecular Patterns in the Pathogenesis of Osteoarthritis: Potentially Novel Therapeutic Targets

John H. Rosenberg; Vikrant Rai; Matthew F. Dilisio; Devendra K. Agrawal

Osteoarthritis (OA) is a chronic disease that degrades the joints and is often associated with increasing age and obesity. The two most common sites of OA in adults are the knee and hip joints. Increased mechanical stress on the joint from obesity can cause the articular cartilage to degrade and release damage-associated molecular patterns (DAMPs). These DAMPs are involved in various molecular pathways that interact with nuclear factor-kappa B and result in the transcription of inflammatory cytokines and activation of matrix metalloproteinases that progressively destroy cartilage. This review focuses on the interactions and contribution to the pathogenesis and progression of OA through the DAMPs: high-mobility group box 1 (HMGB-1), the receptor for advanced glycation end-products (RAGE), the alarmin proteins S100A8 and S100A9, and heparan sulfate. HMGB-1 is released from damaged or necrotic cells and interacts with toll-like receptors (TLRs) and RAGE to induce inflammatory signals, as well as behave as an inflammatory cytokine to activate innate immune cells. RAGE interacts with HMGB-1, advanced glycation end-products, and innate immune cells to increase local inflammation. The alarmin proteins are released following cell damage and interact through TLRs to increase local inflammation and cartilage degradation. Heparan sulfate has been shown to facilitate the binding of HMGB-1 to RAGE and could play a role in the progression of OA. Targeting these DAMPs may be the potential therapeutic strategies for the treatment of OA.


Obesity | 2017

Increased expression of triggering receptor expressed on myeloid cells-1 in the population with obesity and insulin resistance

Saravanan Subramanian; Pradeep K. Pallati; Vikrant Rai; Poonam Sharma; Devendra K. Agrawal; Kalyana C. Nandipati

Triggering receptor expressed on myeloid cells (TREM)−1 has recently been recognized as one of the potent amplifiers of acute and chronic inflammation. However, the exact role of TREM‐1 in regard to insulin insensitivity is unknown.


Canadian Journal of Physiology and Pharmacology | 2017

The Role of DAMPs and PAMPs in Inflammation-mediated Vulnerability of Atherosclerotic Plaques

Vikrant Rai; Devendra K. Agrawal

Atherosclerosis is a chronic inflammatory disease resulting in the formation of the atherosclerotic plaque. Plaque formation starts with the inflammation in fatty streaks and progresses through atheroma, atheromatous plaque, and fibroatheroma leading to development of stable plaque. Hypercholesterolemia, dyslipidemia, and hyperglycemia are the risk factors for atherosclerosis. Inflammation, infection with viruses and bacteria, and dysregulation in the endothelial and vascular smooth muscle cells leads to advanced plaque formation. Death of the cells in the intima due to inflammation results in secretion of damage-associated molecular patterns (DAMPs) such as high mobility group box 1 (HMGB1), receptor for advanced glycation end products (RAGE), alarmins (S100A8, S100A9, S100A12, and oxidized low-density lipoproteins), and infection with pathogens leads to secretion of pathogen-associated molecular patterns (PAMPs) such as lipopolysaccharides, lipoteichoic acids, and peptidoglycans. DAMPs and PAMPs further activate the inflammatory surface receptors such as TREM-1 and toll-like receptors and downstream signaling kinases and transcription factors leading to increased secretion of pro-inflammatory cytokines such as tumor necrosis factor α, interleukin (IL)-1β, IL-6, and interferon-γ and matrix metalloproteinases (MMPs). These mediators and cytokines along with MMPs render the plaque vulnerable for rupture leading to ischemic events. In this review, we have discussed the role of DAMPs and PAMPs in association with inflammation-mediated plaque vulnerability.


Data in Brief | 2016

Data on TREM-1 activation destabilizing carotid plaques.

Velidi H. Rao; Vikrant Rai; Samantha Stoupa; Saravanan Subramanian; Devendra K. Agrawal

The data described herein are related to the article entitled “Tumor necrosis factor-α regulates triggering receptor expressed on myeloid cells-1-dependent matrix metalloproteinases in the carotid plaques of symptomatic patients with carotid stenosis” (Rao et al., 2016) [1]. Additional data are provided on the dose–response effect of TNF-α, TREM-1 antibody and recombinant rTREM-1/Fc fusion chimera (TREM-1/FC) on the expression of MMP-1 and MMP-9 in vascular smooth muscle cells (VSMCs) isolated from human carotid endarterectomy tissues. Data are also presented on the distribution of CD86+ M1- and CD206+ M2-macrophages and their co-localization with TREM-1 in symptomatic carotid plaques as visualized by dual immunofluorescence. The interpretation of this data and further extensive insights can be found in Rao et al. (2016) [1].


Molecular and Cellular Biochemistry | 2017

Increased expression of damage-associated molecular patterns (DAMPs) in osteoarthritis of human knee joint compared to hip joint

John H. Rosenberg; Vikrant Rai; Matthew F. Dilisio; Todd D. Sekundiak; Devendra K. Agrawal

Osteoarthritis (OA) is a degenerative disease characterized by the destruction of cartilage. The greatest risk factors for the development of OA include age and obesity. Recent studies suggest the role of inflammation in the pathogenesis of OA. The two most common locations for OA to occur are in the knee and hip joints. The knee joint experiences more mechanical stress, cartilage degeneration, and inflammation than the hip joint. This could contribute to the increased incidence of OA in the knee joint. Damage-associated molecular patterns (DAMPs), including high-mobility group box-1, receptor for advanced glycation end products, and alarmins (S100A8 and S100A9), are released in the joint in response to stress-mediated chondrocyte and cartilage damage. This facilitates increased cartilage degradation and inflammation in the joint. Studies have documented the role of DAMPs in the pathogenesis of OA; however, the comparison of DAMPs and its influence on OA has not been discussed. In this study, we compared the DAMPs between OA knee and hip joints and found a significant difference in the levels of DAMPs expressed in the knee joint compared to the hip joint. The increased levels of DAMPs suggest a difference in the underlying pathogenesis of OA in the knee and the hip and highlights DAMPs as potential therapeutic targets for OA in the future.


Endocrinology and Metabolism Clinics of North America | 2017

Role of Vitamin D in Cardiovascular Diseases

Vikrant Rai; Devendra K. Agrawal

Vitamin D is critical in mineral homeostasis and skeletal health and plays a regulatory role in nonskeletal tissues. Vitamin D deficiency is associated with chronic inflammatory diseases, including diabetes and obesity, both strong risk factors for cardiovascular diseases (CVDs). CVDs, including coronary artery disease, myocardial infarction, hypertrophy, cardiomyopathy, cardiac fibrosis, heart failure, aneurysm, peripheral arterial disease, hypertension, and atherosclerosis, are major causes of morbidity and mortality. The association of these diseases with vitamin D deficiency and improvement with vitamin D supplementation suggest its therapeutic benefit. The authors review the findings on the association of vitamin D deficiency and CVDs.

Collaboration


Dive into the Vikrant Rai's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joe Abdo

Creighton University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge