Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Viktor Achter is active.

Publication


Featured researches published by Viktor Achter.


Nature | 2015

Comprehensive genomic profiles of small cell lung cancer

Julie George; Jing Shan Lim; Se Jin Jang; Yupeng Cun; Luka Ozretić; Gu Kong; Frauke Leenders; Xin Lu; Lynnette Fernandez-Cuesta; Graziella Bosco; Christian Müller; Ilona Dahmen; Nadine S. Jahchan; Kwon-Sik Park; Dian Yang; Anthony N. Karnezis; Dedeepya Vaka; Angela Torres; Maia Segura Wang; Jan O. Korbel; Roopika Menon; Sung-Min Chun; Deokhoon Kim; Matt Wilkerson; Neil Hayes; David Engelmann; Brigitte M. Pützer; Marc Bos; Sebastian Michels; Ignacija Vlasic

We have sequenced the genomes of 110 small cell lung cancers (SCLC), one of the deadliest human cancers. In nearly all the tumours analysed we found bi-allelic inactivation of TP53 and RB1, sometimes by complex genomic rearrangements. Two tumours with wild-type RB1 had evidence of chromothripsis leading to overexpression of cyclin D1 (encoded by the CCND1 gene), revealing an alternative mechanism of Rb1 deregulation. Thus, loss of the tumour suppressors TP53 and RB1 is obligatory in SCLC. We discovered somatic genomic rearrangements of TP73 that create an oncogenic version of this gene, TP73Δex2/3. In rare cases, SCLC tumours exhibited kinase gene mutations, providing a possible therapeutic opportunity for individual patients. Finally, we observed inactivating mutations in NOTCH family genes in 25% of human SCLC. Accordingly, activation of Notch signalling in a pre-clinical SCLC mouse model strikingly reduced the number of tumours and extended the survival of the mutant mice. Furthermore, neuroendocrine gene expression was abrogated by Notch activity in SCLC cells. This first comprehensive study of somatic genome alterations in SCLC uncovers several key biological processes and identifies candidate therapeutic targets in this highly lethal form of cancer.


Molecular Biology and Evolution | 2010

A Phylogenomic Approach to Resolve the Arthropod Tree of Life

Karen Meusemann; Björn M. von Reumont; Sabrina Simon; Falko Roeding; Sascha Strauss; Patrick Kück; Ingo Ebersberger; Manfred Walzl; Günther Pass; Sebastian Breuers; Viktor Achter; Arndt von Haeseler; Thorsten Burmester; Heike Hadrys; J. Wolfgang Wägele; Bernhard Misof

Arthropods were the first animals to conquer land and air. They encompass more than three quarters of all described living species. This extraordinary evolutionary success is based on an astoundingly wide array of highly adaptive body organizations. A lack of robustly resolved phylogenetic relationships, however, currently impedes the reliable reconstruction of the underlying evolutionary processes. Here, we show that phylogenomic data can substantially advance our understanding of arthropod evolution and resolve several conflicts among existing hypotheses. We assembled a data set of 233 taxa and 775 genes from which an optimally informative data set of 117 taxa and 129 genes was finally selected using new heuristics and compared with the unreduced data set. We included novel expressed sequence tag (EST) data for 11 species and all published phylogenomic data augmented by recently published EST data on taxonomically important arthropod taxa. This thorough sampling reduces the chance of obtaining spurious results due to stochastic effects of undersampling taxa and genes. Orthology prediction of genes, alignment masking tools, and selection of most informative genes due to a balanced taxa-gene ratio using new heuristics were established. Our optimized data set robustly resolves major arthropod relationships. We received strong support for a sister group relationship of onychophorans and euarthropods and strong support for a close association of tardigrades and cycloneuralia. Within pancrustaceans, our analyses yielded paraphyletic crustaceans and monophyletic hexapods and robustly resolved monophyletic endopterygote insects. However, our analyses also showed for few deep splits that were recently thought to be resolved, for example, the position of myriapods, a remarkable sensitivity to methods of analyses.


Nature | 2015

Telomerase activation by genomic rearrangements in high-risk neuroblastoma

Martin Peifer; Falk Hertwig; Frederik Roels; Daniel Dreidax; Moritz Gartlgruber; Roopika Menon; Andrea Krämer; Justin L. Roncaioli; Frederik Sand; Johannes M. Heuckmann; Fakhera Ikram; Rene Schmidt; Sandra Ackermann; Anne Engesser; Yvonne Kahlert; Wenzel Vogel; Janine Altmüller; Peter Nürnberg; Jean Thierry-Mieg; Danielle Thierry-Mieg; Aruljothi Mariappan; Stefanie Heynck; Erika Mariotti; Kai-Oliver Henrich; Christian Gloeckner; Graziella Bosco; Ivo Leuschner; Michal R. Schweiger; Larissa Savelyeva; Simon C. Watkins

Neuroblastoma is a malignant paediatric tumour of the sympathetic nervous system. Roughly half of these tumours regress spontaneously or are cured by limited therapy. By contrast, high-risk neuroblastomas have an unfavourable clinical course despite intensive multimodal treatment, and their molecular basis has remained largely elusive. Here we have performed whole-genome sequencing of 56 neuroblastomas (high-risk, n = 39; low-risk, n = 17) and discovered recurrent genomic rearrangements affecting a chromosomal region at 5p15.33 proximal of the telomerase reverse transcriptase gene (TERT). These rearrangements occurred only in high-risk neuroblastomas (12/39, 31%) in a mutually exclusive fashion with MYCN amplifications and ATRX mutations, which are known genetic events in this tumour type. In an extended case series (n = 217), TERT rearrangements defined a subgroup of high-risk tumours with particularly poor outcome. Despite a large structural diversity of these rearrangements, they all induced massive transcriptional upregulation of TERT. In the remaining high-risk tumours, TERT expression was also elevated in MYCN-amplified tumours, whereas alternative lengthening of telomeres was present in neuroblastomas without TERT or MYCN alterations, suggesting that telomere lengthening represents a central mechanism defining this subtype. The 5p15.33 rearrangements juxtapose the TERT coding sequence to strong enhancer elements, resulting in massive chromatin remodelling and DNA methylation of the affected region. Supporting a functional role of TERT, neuroblastoma cell lines bearing rearrangements or amplified MYCN exhibited both upregulated TERT expression and enzymatic telomerase activity. In summary, our findings show that remodelling of the genomic context abrogates transcriptional silencing of TERT in high-risk neuroblastoma and places telomerase activation in the centre of transformation in a large fraction of these tumours.


Nature Communications | 2014

Frequent mutations in chromatin-remodelling genes in pulmonary carcinoids

Lynnette Fernandez-Cuesta; Martin Peifer; Xin Lu; Ruping Sun; Luka Ozretić; Danila Seidel; Thomas Zander; Frauke Leenders; Julie George; Christian Müller; Ilona Dahmen; Berit Pinther; Graziella Bosco; Kathryn Konrad; Janine Altmüller; Peter Nürnberg; Viktor Achter; Ulrich Lang; Peter M. Schneider; Magdalena Bogus; Alex Soltermann; Odd Terje Brustugun; Åslaug Helland; Steinar Solberg; Marius Lund-Iversen; Sascha Ansén; Erich Stoelben; Gavin Wright; Prudence A. Russell; Zoe Wainer

Pulmonary carcinoids are rare neuroendocrine tumors of the lung. The molecular alterations underlying the pathogenesis of these tumors have not been systematically studied so far. Here we perform gene copy number analysis (n=54), genome/exome (n=44) and transcriptome (n=69) sequencing of pulmonary carcinoids and observe frequent mutations in chromatin-remodeling genes. Covalent histone modifiers and subunits of the SWI/SNF complex are mutated in 40% and 22.2% of the cases respectively, with MEN1, PSIP1 and ARID1A being recurrently affected. In contrast to small-cell lung cancer and large-cell neuroendocrine tumors, TP53 and RB1 mutations are rare events, suggesting that pulmonary carcinoids are not early progenitor lesions of the highly aggressive lung neuroendocrine tumors but arise through independent cellular mechanisms. These data also suggest that inactivation of chromatin remodeling genes is sufficient to drive transformation in pulmonary carcinoids.


PLOS ONE | 2015

Leveraging the Power of High Performance Computing for Next Generation Sequencing Data Analysis: Tricks and Twists from a High Throughput Exome Workflow

Susanne Motameny; Stephan Wonczak; Holger Thiele; Lech Nieroda; Kamel Jabbari; Stefan Borowski; Vishal Sinha; Wilfried Gunia; Ulrich Lang; Viktor Achter; Peter Nürnberg

Next generation sequencing (NGS) has been a great success and is now a standard method of research in the life sciences. With this technology, dozens of whole genomes or hundreds of exomes can be sequenced in rather short time, producing huge amounts of data. Complex bioinformatics analyses are required to turn these data into scientific findings. In order to run these analyses fast, automated workflows implemented on high performance computers are state of the art. While providing sufficient compute power and storage to meet the NGS data challenge, high performance computing (HPC) systems require special care when utilized for high throughput processing. This is especially true if the HPC system is shared by different users. Here, stability, robustness and maintainability are as important for automated workflows as speed and throughput. To achieve all of these aims, dedicated solutions have to be developed. In this paper, we present the tricks and twists that we utilized in the implementation of our exome data processing workflow. It may serve as a guideline for other high throughput data analysis projects using a similar infrastructure. The code implementing our solutions is provided in the supporting information files.


software engineering and advanced applications | 2009

SuGI - Portal and Training Systems for Grid Middlewares

Joachim Götze; Bernd Reuther; Paul Müller; Viktor Achter; Sebastian Breuers; Marc Seifert; Ulrich Lang

Grid computing is a research and development topic, currently getting much attention. As a result, new ideas as well as research and project results are being produced at a very high rate. Therefore, it is difficult for resource providers and researchers in this area to keep track of the development. Resource providers and researchers, new to the topic of Grid computing, have to overcome a huge inhibition threshold before work in this area can be started. The SuGI project is aiming to support providers and researchers with two approaches. First, the SuGI portal presents videos, documents, and links regarding many topics in the area of Grid computing for newcomers as well as for experts. Second, the training systems for Grid middlewares created by the SuGI project can help beginners to do their first steps without a complex installation process, while experts can easily try out different configurations without interfering with their productive systems.


Nature Protocols | 2018

Copy-number analysis and inference of subclonal populations in cancer genomes using Sclust

Yupeng Cun; Tsun-Po Yang; Viktor Achter; Ulrich Lang; Martin Peifer

The genomes of cancer cells constantly change during pathogenesis. This evolutionary process can lead to the emergence of drug-resistant mutations in subclonal populations, which can hinder therapeutic intervention in patients. Data derived from massively parallel sequencing can be used to infer these subclonal populations using tumor-specific point mutations. The accurate determination of copy-number changes and tumor impurity is necessary to reliably infer subclonal populations by mutational clustering. This protocol describes how to use Sclust, a copy-number analysis method with a recently developed mutational clustering approach. In a series of simulations and comparisons with alternative methods, we have previously shown that Sclust accurately determines copy-number states and subclonal populations. Performance tests show that the method is computationally efficient, with copy-number analysis and mutational clustering taking <10 min. Sclust is designed such that even non-experts in computational biology or bioinformatics with basic knowledge of the Linux/Unix command-line syntax should be able to carry out analyses of subclonal populations.


Nature Communications | 2018

Integrative genomic profiling of large-cell neuroendocrine carcinomas reveals distinct subtypes of high-grade neuroendocrine lung tumors

Julie George; Vonn Walter; Martin Peifer; Ludmil B. Alexandrov; Danila Seidel; Frauke Leenders; Lukas Maas; Christian Müller; Ilona Dahmen; Tiffany M. Delhomme; Maude Ardin; Noémie Leblay; Graham Byrnes; Ruping Sun; Aurélien de Reyniès; Anne McLeer-Florin; Graziella Bosco; Florian Malchers; Roopika Menon; Janine Altmüller; Christian Becker; Peter Nürnberg; Viktor Achter; Ulrich Lang; Peter M. Schneider; Magdalena Bogus; Matthew G. Soloway; Matthew D. Wilkerson; Yupeng Cun; James D. McKay


HASH(0x7f331b2d2b50) | 2010

A phylogenomic approach to resolve the arthropod tree of life

Karen Meusemann; Reumont, von, Björn M.; Sabrina Simon; Falko Roeding; Sascha Strauss; Patrick Kück; Ingo Ebersberger; Manfred Walzl; Günther Pass; Sebastian Breuers; Viktor Achter; Arndt von Haeseler; Thorsten Burmester; Heike Hadrys; Johann Wolfgang Wägele; Bernhard Misof


Nature Communications | 2018

Clonal dynamics towards the development of venetoclax resistance in chronic lymphocytic leukemia

Carmen D. Herling; Nima Abedpour; Jonathan M. Weiss; Anna Schmitt; Ron D. Jachimowicz; Olaf Merkel; Maria Cartolano; Sebastian Oberbeck; Petra Mayer; Valeska Berg; Daniel Thomalla; Nadine Kutsch; Marius Stiefelhagen; Paula Cramer; Clemens-Martin Wendtner; Thorsten Persigehl; Andreas Saleh; Janine Altmüller; Peter Nürnberg; Christian P. Pallasch; Viktor Achter; Ulrich Lang; Barbara Eichhorst; Roberta Castiglione; Stephan Schäfer; Reinhard Büttner; Karl-Anton Kreuzer; Hans Christian Reinhardt; Michael Hallek; Lukas P. Frenzel

Collaboration


Dive into the Viktor Achter's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bernd Reuther

Kaiserslautern University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul Müller

Kaiserslautern University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge