Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vilde D. Haakensen is active.

Publication


Featured researches published by Vilde D. Haakensen.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Integrated molecular profiles of invasive breast tumors and ductal carcinoma in situ (DCIS) reveal differential vascular and interleukin signaling

Vessela N. Kristensen; Charles J. Vaske; Josie Ursini-Siegel; Peter Van Loo; Silje H. Nordgard; Ravi Sachidanandam; Therese Sørlie; Fredrik Wärnberg; Vilde D. Haakensen; Åslaug Helland; Bjørn Naume; Charles M. Perou; David Haussler; Olga G. Troyanskaya; Anne Lise Børresen-Dale

We use an integrated approach to understand breast cancer heterogeneity by modeling mRNA, copy number alterations, microRNAs, and methylation in a pathway context utilizing the pathway recognition algorithm using data integration on genomic models (PARADIGM). We demonstrate that combining mRNA expression and DNA copy number classified the patients in groups that provide the best predictive value with respect to prognosis and identified key molecular and stromal signatures. A chronic inflammatory signature, which promotes the development and/or progression of various epithelial tumors, is uniformly present in all breast cancers. We further demonstrate that within the adaptive immune lineage, the strongest predictor of good outcome is the acquisition of a gene signature that favors a high T-helper 1 (Th1)/cytotoxic T-lymphocyte response at the expense of Th2-driven humoral immunity. Patients who have breast cancer with a basal HER2-negative molecular profile (PDGM2) are characterized by high expression of protumorigenic Th2/humoral-related genes (24–38%) and a low Th1/Th2 ratio. The luminal molecular subtypes are again differentiated by low or high FOXM1 and ERBB4 signaling. We show that the interleukin signaling profiles observed in invasive cancers are absent or weakly expressed in healthy tissue but already prominent in ductal carcinoma in situ, together with ECM and cell-cell adhesion regulating pathways. The most prominent difference between low and high mammographic density in healthy breast tissue by PARADIGM was that of STAT4 signaling. In conclusion, by means of a pathway-based modeling methodology (PARADIGM) integrating different layers of molecular data from whole-tumor samples, we demonstrate that we can stratify immune signatures that predict patient survival.


Molecular Oncology | 2010

Glycan gene expression signatures in normal and malignant breast tissue; possible role in diagnosis and progression

Ivan O. Potapenko; Vilde D. Haakensen; Torben Lüders; Åslaug Helland; Ida Bukholm; Therese Sørlie; Vessela N. Kristensen; Ole Christian Lingjærde; Anne Lise Børresen-Dale

Glycosylation is the stepwise procedure of covalent attachment of oligosaccharide chains to proteins or lipids, and alterations in this process have been associated with malignant transformation. Simultaneous analysis of the expression of all glycan‐related genes clearly gives the advantage of enabling a comprehensive view of the genetic background of the glycobiological changes in cancer cells. Studies focusing on the expression of the whole glycome have now become possible, which prompted us to review the present knowledge on glycosylation in relation to breast cancer diagnosis and progression, in the light of available expression data from tumors and breast tissue of healthy individuals. We used various data resources to select a set of 419 functionally relevant genes involved in synthesis, degradation and binding of N‐linked and O‐linked glycans, Lewis antigens, glycosaminoglycans (chondroitin, heparin and keratan sulfate in addition to hyaluronan) and glycosphingolipids. Such glycans are involved in a number of processes relevant to carcinogenesis, including regulation of growth factors/growth factor receptors, cell–cell adhesion and motility as well as immune system modulation. Expression analysis of these glycan‐related genes revealed that mRNA levels for many of them differ significantly between normal and malignant breast tissue. An associative analysis of these genes in the context of current knowledge of their function in protein glycosylation and connection(s) to cancer indicated that synthesis, degradation and adhesion mediated by glycans may be altered drastically in mammary carcinomas. Although further analysis is needed to assess how changes in mRNA levels of glycan genes influence a cells glycome and the precise role that such altered glycan structures play in the pathogenesis of the disease, lessons drawn from this study may help in determining directions for future research in the rapidly‐developing field of glycobiology.


Genome Biology | 2014

Genome-wide DNA methylation profiles in progression to in situ and invasive carcinoma of the breast with impact on gene transcription and prognosis

Thomas Fleischer; Arnoldo Frigessi; Kevin C. Johnson; Hege Edvardsen; Nizar Touleimat; Jovana Klajic; Margit Riis; Vilde D. Haakensen; Fredrik Wärnberg; Bjørn Naume; Åslaug Helland; Anne Lise Børresen-Dale; Jörg Tost; Brock C. Christensen; Vessela N. Kristensen

BackgroundDuctal carcinoma in situ (DCIS) of the breast is a precursor of invasive breast carcinoma. DNA methylation alterations are thought to be an early event in progression of cancer, and may prove valuable as a tool in clinical decision making and for understanding neoplastic development.ResultsWe generate genome-wide DNA methylation profiles of 285 breast tissue samples representing progression of cancer, and validate methylation changes between normal and DCIS in an independent dataset of 15 normal and 40 DCIS samples. We also validate a prognostic signature on 583 breast cancer samples from The Cancer Genome Atlas. Our analysis reveals that DNA methylation profiles of DCIS are radically altered compared to normal breast tissue, involving more than 5,000 genes. Changes between DCIS and invasive breast carcinoma involve around 1,000 genes. In tumors, DNA methylation is associated with gene expression of almost 3,000 genes, including both negative and positive correlations. A prognostic signature based on methylation level of 18 CpGs is associated with survival of breast cancer patients with invasive tumors, as well as with survival of patients with DCIS and mixed lesions of DCIS and invasive breast carcinoma.ConclusionsThis work demonstrates that changes in the epigenome occur early in the neoplastic progression, provides evidence for the possible utilization of DNA methylation-based markers of progression in the clinic, and highlights the importance of epigenetic changes in carcinogenesis.


Journal of Proteome Research | 2014

Association of N-Glycosylation with Breast Carcinoma and Systemic Features Using High-Resolution Quantitative UPLC

Radka Saldova; Akram Asadi Shehni; Vilde D. Haakensen; Israel Steinfeld; Mark Hilliard; Ilona Kifer; Åslaug Helland; Zohar Yakhini; Anne Lise Børresen-Dale; Pauline M. Rudd

An improved separation of the human serum N-glycome using hydrophilic interaction chromatography technology with UPLC is described, where more than 140 N-glycans were assigned. Using this technique, serum samples from 107 healthy controls and 62 newly diagnosed breast cancer patients were profiled. The most statistically significant alterations were observed in cancer patients compared with healthy controls: an increase in sialylation, branching, and outer-arm fucosylation and a decrease in high-mannosylated and biantennary core-fucosylated glycans. In the controls and cases combined systemic features were analyzed; serum estradiol was associated with increase in digalactosylated glycans, and higher mammographic density was associated with increase in biantennary digalactosylated glycans and with decrease in trisialylated and in outer-arm fucosylated glycans. Furthermore, particular glycans were altered in some features of the breast carcinomas; bisected biantennary nonfucosylated glycans were decreased in patients with progesterone receptor positive tumors, and core-fucosylated biantennary bisected monogalactosylated glycans were decreased in patients with the TP53 mutation. Systemic features show more significant associations with the serum N-glycome than do the features of the breast carcinomas. In conclusion, the UPLC-based glycan analysis technique described here reveals highly significant differences between healthy women and breast cancer patients. Significant associations with breast carcinoma and systemic features are described.


Cell Stem Cell | 2013

Molecular profiling of human mammary gland links breast cancer risk to a p27(+) cell population with progenitor characteristics.

Sibgat Choudhury; Vanessa Almendro; Vanessa F. Merino; Zhenhua Wu; Reo Maruyama; Ying Su; Filipe C. Martins; Mary Jo Fackler; Marina Bessarabova; Adam Kowalczyk; Thomas C. Conway; Bryan Beresford-Smith; Geoff Macintyre; Yu Kang Cheng; Zoila Lopez-Bujanda; Antony Kaspi; Rong Hu; Judith Robens; Tatiana Nikolskaya; Vilde D. Haakensen; Stuart J. Schnitt; Pedram Argani; Gabrielle Ethington; Laura Panos; Michael P. Grant; Jason Clark; William Herlihy; S. Joyce Lin; Grace L. Chew; Erik W. Thompson

Early full-term pregnancy is one of the most effective natural protections against breast cancer. To investigate this effect, we have characterized the global gene expression and epigenetic profiles of multiple cell types from normal breast tissue of nulliparous and parous women and carriers of BRCA1 or BRCA2 mutations. We found significant differences in CD44(+) progenitor cells, where the levels of many stem cell-related genes and pathways, including the cell-cycle regulator p27, are lower in parous women without BRCA1/BRCA2 mutations. We also noted a significant reduction in the frequency of CD44(+)p27(+) cells in parous women and showed, using explant cultures, that parity-related signaling pathways play a role in regulating the number of p27(+) cells and their proliferation. Our results suggest that pathways controlling p27(+) mammary epithelial cells and the numbers of these cells relate to breast cancer risk and can be explored for cancer risk assessment and prevention.


BMC Medical Genomics | 2011

Gene expression profiles of breast biopsies from healthy women identify a group with claudin-low features

Vilde D. Haakensen; Ole Christian Lingjærde; Torben Lüders; Margit Riis; Aleix Prat; Melissa A. Troester; Marit Muri Holmen; Jan Ole Frantzen; Linda Romundstad; Dina Navjord; Ida R. K. Bukholm; Tom B. Johannesen; Charles M. Perou; Giske Ursin; Vessela N. Kristensen; Anne Lise Børresen-Dale; Åslaug Helland

BackgroundIncreased understanding of the variability in normal breast biology will enable us to identify mechanisms of breast cancer initiation and the origin of different subtypes, and to better predict breast cancer risk.MethodsGene expression patterns in breast biopsies from 79 healthy women referred to breast diagnostic centers in Norway were explored by unsupervised hierarchical clustering and supervised analyses, such as gene set enrichment analysis and gene ontology analysis and comparison with previously published genelists and independent datasets.ResultsUnsupervised hierarchical clustering identified two separate clusters of normal breast tissue based on gene-expression profiling, regardless of clustering algorithm and gene filtering used. Comparison of the expression profile of the two clusters with several published gene lists describing breast cells revealed that the samples in cluster 1 share characteristics with stromal cells and stem cells, and to a certain degree with mesenchymal cells and myoepithelial cells. The samples in cluster 1 also share many features with the newly identified claudin-low breast cancer intrinsic subtype, which also shows characteristics of stromal and stem cells. More women belonging to cluster 1 have a family history of breast cancer and there is a slight overrepresentation of nulliparous women in cluster 1. Similar findings were seen in a separate dataset consisting of histologically normal tissue from both breasts harboring breast cancer and from mammoplasty reductions.ConclusionThis is the first study to explore the variability of gene expression patterns in whole biopsies from normal breasts and identified distinct subtypes of normal breast tissue. Further studies are needed to determine the specific cell contribution to the variation in the biology of normal breasts, how the clusters identified relate to breast cancer risk and their possible link to the origin of the different molecular subtypes of breast cancer.


BMC Cancer | 2011

Serum estradiol levels associated with specific gene expression patterns in normal breast tissue and in breast carcinomas

Vilde D. Haakensen; Trine Bjøro; Torben Lüders; Margit Riis; Ida R. K. Bukholm; Vessela N. Kristensen; Melissa A. Troester; Marit M. Homen; Giske Ursin; Anne Lise Børresen-Dale; Åslaug Helland

BackgroundHigh serum levels of estradiol are associated with increased risk of postmenopausal breast cancer. Little is known about the gene expression in normal breast tissue in relation to levels of circulating serum estradiol.MethodsWe compared whole genome expression data of breast tissue samples with serum hormone levels using data from 79 healthy women and 64 breast cancer patients. Significance analysis of microarrays (SAM) was used to identify differentially expressed genes and multivariate linear regression was used to identify independent associations.ResultsSix genes (SCGB3A1, RSPO1, TLN2, SLITRK4, DCLK1, PTGS1) were found differentially expressed according to serum estradiol levels (FDR = 0). Three of these independently predicted estradiol levels in a multivariate model, as SCGB3A1 (HIN1) and TLN2 were up-regulated and PTGS1 (COX1) was down-regulated in breast samples from women with high serum estradiol. Serum estradiol, but none of the differentially expressed genes were significantly associated with mammographic density, another strong breast cancer risk factor. In breast carcinomas, expression of GREB1 and AREG was associated with serum estradiol in all cancers and in the subgroup of estrogen receptor positive cases.ConclusionsWe have identified genes associated with serum estradiol levels in normal breast tissue and in breast carcinomas. SCGB3A1 is a suggested tumor suppressor gene that inhibits cell growth and invasion and is methylated and down-regulated in many epithelial cancers. Our findings indicate this gene as an important inhibitor of breast cell proliferation in healthy women with high estradiol levels. In the breast, this gene is expressed in luminal cells only and is methylated in non-BRCA-related breast cancers. The possibility of a carcinogenic contribution of silencing of this gene for luminal, but not basal-like cancers should be further explored. PTGS1 induces prostaglandin E2 (PGE2) production which in turn stimulates aromatase expression and hence increases the local production of estradiol. This is the first report studying such associations in normal breast tissue in humans.


International Journal of Cancer | 2016

Subtype-specific micro-RNA expression signatures in breast cancer progression.

Vilde D. Haakensen; Vegard Nygaard; Liliana Greger; Miriam Ragle Aure; Bastian Fromm; Ida R. K. Bukholm; Torben Lüders; Suet Feung Chin; Anna Git; Carlos Caldas; Vessela N. Kristensen; Alvis Brazma; Anne Lise Børresen-Dale; Eivind Hovig; Åslaug Helland

Robust markers of invasiveness may help reduce the overtreatment of in situ carcinomas. Breast cancer is a heterogeneous disease and biological mechanisms for carcinogenesis vary between subtypes. Stratification by subtype is therefore necessary to identify relevant and robust signatures of invasive disease. We have identified microRNA (miRNA) alterations during breast cancer progression in two separate datasets and used stratification and external validation to strengthen the findings. We analyzed two separate datasets (METABRIC and AHUS) consisting of a total of 186 normal breast tissue samples, 18 ductal carcinoma in situ (DCIS) and 1,338 invasive breast carcinomas. Validation in a separate dataset and stratification by molecular subtypes based on immunohistochemistry, PAM50 and integrated cluster classifications were performed. We propose subtype‐specific miRNA signatures of invasive carcinoma and a validated signature of DCIS. miRNAs included in the invasive signatures include downregulation of miR‐139‐5p in aggressive subtypes and upregulation of miR‐29c‐5p expression in the luminal subtypes. No miRNAs were differentially expressed in the transition from DCIS to invasive carcinomas on the whole, indicating the need for subtype stratification. A total of 27 miRNAs were included in our proposed DCIS signature. Significant alterations of expression included upregulation of miR‐21‐5p and the miR‐200 family and downregulation of let‐7 family members in DCIS samples. The signatures proposed here can form the basis for studies exploring DCIS samples with increased invasive potential and serum biomarkers for in situ and invasive breast cancer.


Molecular Oncology | 2015

Glycan-related gene expression signatures in breast cancer subtypes; relation to survival

Ivan O. Potapenko; Torben Lüders; Hege G. Russnes; Åslaug Helland; Therese Sørlie; Vessela N. Kristensen; Silje Nord; Ole Christian Lingjærde; Anne Lise Børresen-Dale; Vilde D. Haakensen

Alterations in glycan structures are early signs of malignancy and have recently been proposed to be in part a driving force behind malignant transformation. Here, we explore whether differences in expression of genes related to the process of glycosylation exist between breast carcinoma subtypes – and look for their association to clinical parameters.


Molecular Oncology | 2016

Serum N-glycan analysis in breast cancer patients--Relation to tumour biology and clinical outcome.

Vilde D. Haakensen; Israel Steinfeld; Radka Saldova; Akram Asadi Shehni; Ilona Kifer; Bjørn Naume; Pauline M. Rudd; Anne Lise Børresen-Dale; Zohar Yakhini

Glycosylation and related processes play important roles in cancer development and progression, including metastasis. Several studies have shown that N‐glycans have potential diagnostic value as cancer serum biomarkers. We have explored the significance of the abundance of particular serum N‐glycan structures as important features of breast tumour biology by studying the serum glycome and tumour transcriptome (mRNA and miRNA) of 104 breast cancer patients. Integration of these types of molecular data allows us to study the relationship between serum glycans and transcripts representing functional pathways, such as metabolic pathways or DNA damage response. We identified tri antennary trigalactosylated trisialylated glycans in serum as being associated with lower levels of tumour transcripts involved in focal adhesion and integrin‐mediated cell adhesion. These glycan structures were also linked to poor prognosis in patients with ER negative tumours. High abundance of simple monoantennary glycan structures were associated with increased survival, particularly in the basal‐like subgroup. The presence of circulating tumour cells was found to be significantly associated with several serum glycome structures like bi and triantennary, di‐ and trigalactosylated, di‐ and trisialylated. The link between tumour miRNA expression levels and N‐glycan production is also examined.

Collaboration


Dive into the Vilde D. Haakensen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Torben Lüders

Akershus University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bjørn Naume

Oslo University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Giske Ursin

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge