Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vilhjálmur Svansson is active.

Publication


Featured researches published by Vilhjálmur Svansson.


Veterinary Microbiology | 1993

Studies on manifestations of canine distemper virus infection in an urban dog population.

Merete Blixenkrone-Møller; Vilhjálmur Svansson; Per Have; Claes Örvell; Max J. G. Appel; Ib Rode Pedersen; Hans Henrik Dietz; Per Henriksen

An upsurge of canine distemper was recognized at the beginning of 1991 in the urban dog population of the Copenhagen area. The outbreak had the characteristics of a virulent morbillivirus introduction in a partly immune population, where the disease primarily was manifested in young individuals. Testing of single serum samples for the presence of canine distemper virus (CDV) IgM antibodies using an IgM ELISA confirmed current and recent CDV infections in an urban dog population, where the use of attenuated CDV vaccines was widespread. In 49 out of 66 sera from clinical cases suspected of canine distemper we detected CDV IgM antibodies, as compared to the detection of viral antigen by indirect immunofluorescence in 27 of 65 specimens of conjunctival cells. The antigenic make-up of isolates from acute and subacute clinical cases was investigated with a panel of 51 monoclonal antibodies directed against CDV and the related phocine distemper virus. The isolates exhibited an homogeneous reaction pattern and shared overall antigenic characteristics of the CDV prototype. The majority of cases were diagnosed among unvaccinated dogs and individuals with unknown or obscure vaccination record. However, severe clinical cases were also diagnosed in vaccinated individuals.


PLOS Genetics | 2012

Mutations in MITF and PAX3 cause "splashed white" and other white spotting phenotypes in horses.

Regula Hauswirth; Bianca Haase; Marlis Blatter; Samantha A. Brooks; Dominik Burger; Cord Drögemüller; Vincent Gerber; Diana Henke; Jozef Janda; Rony Jude; K. Gary Magdesian; Jacqueline M. Matthews; Pierre André Poncet; Vilhjálmur Svansson; Teruaki Tozaki; Lorna Wilkinson-White; M. Cecilia T. Penedo; Stefan Rieder; Tosso Leeb

During fetal development neural-crest-derived melanoblasts migrate across the entire body surface and differentiate into melanocytes, the pigment-producing cells. Alterations in this precisely regulated process can lead to white spotting patterns. White spotting patterns in horses are a complex trait with a large phenotypic variance ranging from minimal white markings up to completely white horses. The “splashed white” pattern is primarily characterized by an extremely large blaze, often accompanied by extended white markings at the distal limbs and blue eyes. Some, but not all, splashed white horses are deaf. We analyzed a Quarter Horse family segregating for the splashed white coat color. Genome-wide linkage analysis in 31 horses gave a positive LOD score of 1.6 in a region on chromosome 6 containing the PAX3 gene. However, the linkage data were not in agreement with a monogenic inheritance of a single fully penetrant mutation. We sequenced the PAX3 gene and identified a missense mutation in some, but not all, splashed white Quarter Horses. Genome-wide association analysis indicated a potential second signal near MITF. We therefore sequenced the MITF gene and found a 10 bp insertion in the melanocyte-specific promoter. The MITF promoter variant was present in some splashed white Quarter Horses from the studied family, but also in splashed white horses from other horse breeds. Finally, we identified two additional non-synonymous mutations in the MITF gene in unrelated horses with white spotting phenotypes. Thus, several independent mutations in MITF and PAX3 together with known variants in the EDNRB and KIT genes explain a large proportion of horses with the more extreme white spotting phenotypes.


Research in Veterinary Science | 2008

Study of equid herpesviruses 2 and 5 in Iceland with a type-specific polymerase chain reaction.

Einar G. Torfason; Lilja Thorsteinsdóttir; Sigurbjörg Torsteinsdóttir; Vilhjálmur Svansson

The horse population in Iceland is a special breed, isolated from other horses for at least 1000 years. This provides an exceptional opportunity to investigate old and new pathogens in an inbred herd with few infectious diseases. We have developed a high sensitivity semi-nested PCR to study equid gammaherpesviruses 2 and 5 (EHV-2 and 5) in Iceland. The first PCR is group specific, the second type-specific, targeting a 113bp sequence in the glyB gene. DNA isolated from white blood cells and 18 different organs was tested for the presence of EHV-2 and 5. This was done in adult horses and foals, healthy and with various enteric infections. Both virus types were easily detected in all types of organs tested or EHV-2 in 79% cases and EHV-5 in 63%. In DNA from PBMC or buffy-coat EHV-2 was found in 20% cases and EHV-5 in 10%, all except one positive were foals. Co-culture of PBMC on fetal horse kidney cells was efficient for detecting EHV-2 but not for EHV-5. We verify here for the first time infections with EHV-2 and 5 in horses in Iceland and show that both viruses are common.


Veterinary Immunology and Immunopathology | 2008

Report of the 3rd Havemeyer Workshop on allergic diseases of the horse, Hólar, Iceland, June 2007

E. Marti; V. Gerber; A.D. Wilson; Jean-Pierre Lavoie; David W. Horohov; D.P. Lunn; Douglas F. Antczak; S. Bjornsdottir; T. S. Bjornsdottir; F. M. Cunningham; M. Derer; R. Frey; E. Hamza; P. Horin; M. Heimann; G. Kolm-Stark; G. Olafsdottir; Eve Ramery; C.L. Russell; A. Schaffartzik; Vilhjálmur Svansson; Sigurbjörg Torsteinsdóttir; Bettina Wagner

Allergic diseases occur in most mammals, although some species such as humans, dogs and horses seem to be more prone to develop allergies than others. In horses, insect bite hypersensitivity (IBH), an allergic dermatitis caused by bites of midges, and recurrent airway obstruction (RAO), a hyperreactivity to stable born dust and allergens, are the two most prevalent allergic diseases. Allergic diseases involve the interaction of three major factors: (i) genetic constitution, (ii) exposure to allergens, and (iii) a dysregulation of the immune response determined by (i) and (ii). However, other environmental factors such as infectious diseases, contact with endotoxin and degree of infestation with endoparasites have been shown to influence the prevalence of allergic diseases in humans. How these factors may impact upon allergic disease in the horse is unknown at this time. The 3rd workshop on Allergic Diseases of the Horse, with major sponsorship from the Havemeyer Foundation, was held in Hólar, Iceland, in June 2007 and focussed on immunological and genetic aspects of IBH and RAO. This particular venue was chosen because of the prevalence of IBH in exported Icelandic horses. The incidence of IBH is significantly different between Icelandic horses born in Europe or North America and those born in Iceland and exported as adults. Although the genetic factors and allergens are the same, exported adult horses show a greater incidence of IBH. This suggests that environmental or epigenetic factors may contribute to this response. This report summarizes the present state of knowledge and summarizes important issues discussed at the workshop.


Veterinary Immunology and Immunopathology | 2011

Skin-infiltrating T cells and cytokine expression in Icelandic horses affected with insect bite hypersensitivity: A possible role for regulatory T cells

Mareike Heimann; Jozef Janda; Olof Sigurdardottir; Vilhjálmur Svansson; Jolanta Klukowska; Claudia Von Tscharner; Marcus G. Doherr; Hans Broström; L. Andersson; Sigurjón Einarsson; Eliane Isabelle Marti; Sigurbjörg Torsteinsdóttir

Equine insect bite hypersensitivity (IBH) is a seasonally recurrent, pruritic skin disorder caused by an IgE-mediated reaction to salivary proteins of biting flies, predominantly of the genus Culicoides. The aim of this study was to define T cell subsets and cytokine profile in the skin of IBH-affected Icelandic horses with particular focus on the balance between T helper (Th) 1, Th2 and T regulatory (Treg) cells. Distribution and number of CD4+, CD8+ and Forkhead box P3 (FoxP3)+ T cells were characterized by immunohistochemical staining in lesional and non-lesional skin of moderately and severely IBH-affected horses (n=14) and in the skin of healthy control horses (n=10). Using real-time quantitative reverse transcription-polymerase chain reaction, mRNA expression levels of Th2 cytokines (Interleukin (IL)-4, IL-5, IL-13), Th1 cytokines (Interferon-γ), regulatory cytokines (Transforming Growth Factor β1, IL-10) and the Treg transcription factor FoxP3 were measured in skin and blood samples. Furthermore, Culicoides nubeculosus specific serum IgE levels were assessed. Lesions of IBH-affected horses contained significantly higher numbers of CD4+ cells than skin of healthy control horses. Furthermore, the total number of T cells (CD4+ and CD8+) was significantly increased in lesional compared to non-lesional skin and there was a tendency (p=0.07) for higher numbers of CD4+ cells in lesional compared to non-lesional skin. While the number of FoxP3+ T cells did not differ significantly between the groups, the ratio of Foxp3 to CD4+ cells was significantly lower in lesions of severely IBH-affected horses than in moderately affected or control horses. Interestingly, differences in FoxP3 expression were more striking at the mRNA level. FoxP3 mRNA levels were significantly reduced in lesional skin, compared both to non-lesional and to healthy skin and were also significantly lower in non-lesional compared to healthy skin. Expression levels of IL-13, but not IL-4 or IL-5, were significantly elevated in lesional and non-lesional skin of IBH-affected horses. IL-10 levels were lower in lesional compared to non-lesional skin (p=0.06) and also lower (p=0.06) in the blood of IBH-affected than of healthy horses. No significant changes were observed regarding blood expression levels of Th1 and Th2 cytokines or FoxP3. Finally, IBH-affected horses had significantly higher Culicoides nubeculosus specific serum IgE levels than control horses. The presented data suggest that an imbalance between Th2 and Treg cells is a characteristic feature in IBH. Treatment strategies for IBH should thus aim at restoring the balance between Th2 and Treg cells.


Veterinary Journal | 2013

Combining two serological assays optimises sensitivity and specificity for the identification of Streptococcus equi subsp equi exposure

Carl Robinson; Karen F. Steward; Nicola Potts; Colin Barker; Toni-Ann Hammond; Karen Pierce; Eggert Gunnarsson; Vilhjálmur Svansson; Josh Slater; J. Richard Newton; Andrew S. Waller

The detection of anti-Streptococcus equi antibodies in the blood serum of horses can assist with the identification of apparently healthy persistently infected carriers and the prevention of strangles outbreaks. The aim of the current study was to use genome sequencing data to develop an indirect enzyme linked immunosorbent assay (iELISA) that targets two S. equi-specific protein fragments. The sensitivity and specificity of the antigen A and antigen C iELISAs were compared to an SeM-based iELISA marketed by IDvet - diagnostic Vétérinaire (IDvet). Individually, each assay compromised specificity in order to achieve sufficient sensitivity (SeM iELISA had a sensitivity of 89.9%, but a specificity of only 77.0%) or sensitivity to achieve high specificity. However, combining the results of the antigen A and antigen C iELISAs permitted optimisation of both sensitivity (93.3%) and specificity (99.3%), providing a robust assay for the identification of horses exposed to S. equi.


Virus Research | 1996

COMPARATIVE ANALYSIS OF THE ATTACHMENT PROTEIN GENE (H) OF DOLPHIN MORBILLIVIRUS

Merete Blixenkrone-Møller; Gert Bolt; Tove Dannemann Jensen; Timm C. Harder; Vilhjálmur Svansson

DMV, dolphin morbillivirus, a paramyxovirus of uncertain origin recently emerged in Mediterranean dolphins. This study presents the complete nucleotide sequence of the hemagglutinin (H) gene including the gene boundaries. The single open reading frame of the DMV H gene encodes a protein of 604 residues which exhibits overall sequence characteristics similar to the H genes of other morbilliviruses. When compared to its closest homologues, measles virus (MV) and rinderpest virus (RPV), DMV has, respectively, 44 and 46% of amino acid residues in identical positions. The primary sequence of the DMV H protein is markedly less conserved than that of the fusion protein. The comparative data at the genomic level correspond with cross-neutralization studies with different morbilliviruses. Retrospective serogical studies dating back to 1983 indicate DMV-like infections in whales of the eastern Atlantic. The presented data support and extend previous studies suggesting that this novel morbillivirus is one of the phylogenetically oldest morbilliviruses known to circulate today. The relationship of DMV and established morbilliviruses to the newly emerged candidate morbillivirus infecting horse and man is discussed.


Research in Veterinary Science | 2003

Intratracheal inoculation as an efficient route of experimental infection with maedi–visna virus

Sigurbjörg Torsteinsdóttir; Sigrídur Matthíasdóttir; N. Vidarsdóttir; Vilhjálmur Svansson; Gudmundur Pétursson

Maedi-visna virus (MVV) spreads horizontally via the respiratory route. In order to establish an experimental mucosal infection route, we compared intranasal and intratracheal inoculation using the infectious MVV molecular clone KV1772-kv72/67. For intranasal infection 0.5 x 10(3)-0.5 x 10(7) TCID50 of virus was sprayed into the nostrils of the sheep. For the intratracheal infection 10(0)-10(6) TCID50 of virus was injected into the trachea. Successful infection was indicated by development of MVV specific antibodies and virus isolation over a period of 6 months. In the intranasal infection, only the sheep receiving the highest dose i.e., 0.5 x 10(7) TCID50, became infected, suggesting that intranasal application was not an efficient mode of infection. In the intratracheal infection, the sheep infectious dose 50% was 10(1) TCID50 and virus could be isolated from the central nervous system 4 months post infection with 10(4) TCID50. Therefore it is concluded that intratracheal infection is a very efficient route for experimental inoculation with MVV.


Acta Veterinaria Scandinavica | 2008

In vitro analysis of expression vectors for DNA vaccination of horses: the effect of a Kozak sequence.

Guðbjörg Ásta Ólafsdóttir; Vilhjálmur Svansson; Sigurður Ingvarsson; Eliane Isabelle Marti; Sigurbjörg Torsteinsdóttir

One of the prerequisite for developing DNA vaccines for horses are vectors that are efficiently expressed in horse cells.We have analysed the ectopic expression of the human serum albumin gene in primary horse cells from different tissues. The vectors used are of pcDNA and pUC origin and include the cytomegalovirus (CMV) promoter. The pUC vectors contain CMV intron A whereas the pcDNA vectors do not.Insertion of intron A diminished the expression from the pcDNA vectors whereas insertion of a Kozak sequence upstream of the gene in two types of pUC vectors increased significantly the in vitro expression in primary horse cells derived from skin, lung, duodenum and kidney.We report for the first time the significance of full consensus Kozak sequences for protein expression in horse cells in vitro.


Journal of Virology | 2005

Simultaneous Mutations in CA and Vif of Maedi-Visna Virus Cause Attenuated Replication in Macrophages and Reduced Infectivity In Vivo

Bjarki Gudmundsson; Stefán R. Jónsson; Oddur Ólafsson; Gudrún Agnarsdóttir; Sigrídur Matthíasdóttir; Gudmundur Georgsson; Sigurbjörg Torsteinsdóttir; Vilhjálmur Svansson; Helga Bryndı́s Kristbjörnsdóttir; Sigrídur Rut Franzdóttir; Ólafur S. Andrésson; Valgerdur Andrésdóttir

ABSTRACT Maedi-visna virus (MVV) is a lentivirus of sheep sharing several key features with the primate lentiviruses. The virus causes slowly progressive diseases, mainly in the lungs and the central nervous system of sheep. Here, we investigate the molecular basis for the differential growth phenotypes of two MVV isolates. One of the isolates, KV1772, replicates well in a number of cell lines and is highly pathogenic in sheep. The second isolate, KS1, no longer grows on macrophages or causes disease. The two virus isolates differ by 129 nucleotide substitutions and two deletions of 3 and 15 nucleotides in the env gene. To determine the molecular nature of the lesions responsible for the restrictive growth phenotype, chimeric viruses were constructed and used to map the phenotype. An L120R mutation in the CA domain, together with a P205S mutation in Vif (but neither alone), could fully convert KV1772 to the restrictive growth phenotype. These results suggest a functional interaction between CA and Vif in MVV replication, a property that may relate to the innate antiretroviral defense mechanisms in sheep.

Collaboration


Dive into the Vilhjálmur Svansson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge